Wide-band transmittance of one-dimensional photonic crystals carved in Si3N4/SiO2 channel waveguides -: art. no. 211116

被引:9
作者
Gerace, D
Galli, M
Bajoni, D
Guizzetti, G
Andreani, LC
Riboli, F
Melchiorri, M
Daldosso, N
Pavesi, L
Pucker, G
Cabrini, S
Businaro, L
Di Fabrizio, E
机构
[1] Univ Pavia, INFM, CNR, I-27100 Pavia, Italy
[2] Univ Pavia, Dipartimento Fis A Volta, I-27100 Pavia, Italy
[3] Univ Trent, Dipartimento Fis, I-38050 Trento, Italy
[4] IRST, ITC, Microsyst Div, I-38050 Trento, Italy
[5] TASC, Ist Nazl Fis Mat, INFM, CNR,ELETTRA, I-34012 Trieste, Italy
关键词
D O I
10.1063/1.2135408
中图分类号
O59 [应用物理学];
学科分类号
摘要
Experimental and theoretical investigations of photonic crystal (PhC) structures in silicon nitride/silicon dioxide (Si3N4/SiO2) vertical waveguiding geometry are reported. One-dimensional patterns, either periodic or with cavity layers, are carved onto the channel waveguides by using focused ion beam lithography. Broadband transmittance spectroscopy in the visible and near-infrared frequency ranges is employed to show photonic band gap behavior up to the fourth order. For structures with a cavity layer, resonant peaks appear in transmittance spectra within the photonic gaps, in agreement with theory. The results show the interest of Si3N4/SiO2-based PhC waveguides for photonics applications from the infrared up to the visible range. (c) 2005 American Institute of Physics.
引用
收藏
页码:1 / 3
页数:3
相关论文
共 19 条
[1]   Photonic bands and gap maps in a photonic crystal slab [J].
Andreani, LC ;
Agio, M .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (07) :891-898
[2]   Focused ion beam lithography for two dimensional array structures for photonic applications [J].
Cabrini, S ;
Carpentiero, A ;
Kumar, R ;
Businaro, L ;
Candeloro, P ;
Prasciolu, M ;
Gosparini, A ;
Andreani, C ;
De Vittorio, M ;
Stomeo, T ;
Di Fabrizio, E .
MICROELECTRONIC ENGINEERING, 2005, 78-79 :11-15
[3]   Bragg waveguide grating as a 1d photonic band gap structure: COST 268 modelling task [J].
J. Čtyroký ;
S. Helfert ;
R. Pregla ;
P. Bienstman ;
R. Baets ;
R. De Ridder ;
R. Stoffer ;
G. Klaasse ;
J. PetráČek ;
P. Lalanne ;
J. P. Hugonin ;
R. M. De LaRue .
Optical and Quantum Electronics, 2002, 34 (5-6) :455-470
[4]   Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line [J].
Daldosso, N ;
Melchiorri, M ;
Riboli, F ;
Girardini, M ;
Pucker, G ;
Crivellari, M ;
Bellutti, P ;
Lui, A ;
Pavesi, L .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2004, 22 (07) :1734-1740
[5]   Photonic-bandgap microcavities in optical waveguides [J].
Foresi, JS ;
Villeneuve, PR ;
Ferrera, J ;
Thoen, ER ;
Steinmeyer, G ;
Fan, S ;
Joannopoulos, JD ;
Kimerling, LC ;
Smith, HI ;
Ippen, EP .
NATURE, 1997, 390 (6656) :143-145
[6]   Cavity modes in one-dimensional photonic crystal slabs [J].
Gerace, D ;
Agio, M ;
Andreani, LC ;
Lalanne, P .
OPTICAL AND QUANTUM ELECTRONICS, 2005, 37 (1-3) :277-292
[7]   Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs [J].
Gerace, D ;
Andreani, LC .
PHYSICAL REVIEW E, 2004, 69 (05) :9
[8]   Guided modes in photonic crystal slabs [J].
Johnson, SG ;
Fan, SH ;
Villeneuve, PR ;
Joannopoulos, JD ;
Kolodziejski, LA .
PHYSICAL REVIEW B, 1999, 60 (08) :5751-5758
[9]  
JOHNSON SG, 2002, PHOTONIC CRYSTALS RO
[10]   Waveguide microcavity based on photonic microstructures [J].
Krauss, TF ;
Vogele, B ;
Stanley, CR ;
DelaRue, RM .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1997, 9 (02) :176-178