Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir

被引:556
作者
Zhu, Hongli [1 ]
Jia, Zheng [2 ]
Chen, Yuchen [1 ]
Weadock, Nicholas [1 ]
Wan, Jiayu [1 ]
Vaaland, Oeyvind [2 ]
Han, Xiaogang [1 ]
Li, Teng [2 ]
Hu, Liangbing [1 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Na-ion battery anode; Sn nanostructures; wood fibers; mechanical buffer; ion diffusion; NA; INSERTION; STORAGE; NANOCOMPOSITES; NANOPARTICLES; TEREPHTHALATE; INTERPHASE; CHALLENGES; PAPER;
D O I
10.1021/nl400998t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium (Na)-ion batteries offer an attractive option for low cost grid scale storage due to the abundance of Na. Tin (Sn) is touted as a high capacity anode for Na-ion batteries with a high theoretical capacity of 847 mAh/g, but it has several limitations such as large volume expansion with cycling, slow kinetics, and unstable solid electrolyte interphase (SEI) formation. In this article, we demonstrate that an anode consisting of a Sn thin film deposited on a hierarchical wood fiber substrate simultaneously addresses all the challenges associated with Sn anodes. The soft nature of wood fibers effectively releases the mechanical stresses associated with the sodiation process, and the mesoporous structure functions as an electrolyte reservoir that allows for ion transport through the outer and inner surface of the fiber. These properties are confirmed experimentally and computationally. A stable cycling performance of 400 cycles with an initial capacity of 339 mAh/g is demonstrated; a significant improvement over other reported Sn nanostructures. The soft and mesoporous wood fiber substrate can be utilized as a new platform for low cost Na-ion batteries.
引用
收藏
页码:3093 / 3100
页数:8
相关论文
共 34 条
[1]   Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells [J].
Abouimrane, Ali ;
Weng, Wei ;
Eltayeb, Hussameldin ;
Cui, Yanjie ;
Niklas, Jens ;
Poluektov, Oleg ;
Amine, Khalil .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) :9632-9638
[2]   Diffusion induced stresses in buckling battery electrodes [J].
Bhandakkar, Tanmay K. ;
Johnson, Harley T. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2012, 60 (06) :1103-1121
[3]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[4]   Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties [J].
Carlsson, Daniel O. ;
Nystrom, Gustav ;
Zhou, Qi ;
Berglund, Lars A. ;
Nyholm, Leif ;
Stromme, Maria .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (36) :19014-19024
[5]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[6]   Challenges for Na-ion Negative Electrodes [J].
Chevrier, V. L. ;
Ceder, G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) :A1011-A1014
[7]   Thermoelastic anisotropy of a natural fiber [J].
Cichocki, FR ;
Thomason, JL .
COMPOSITES SCIENCE AND TECHNOLOGY, 2002, 62 (05) :669-678
[8]  
Dean J.A., 2001, Lange's Handbook of Chemistry, V15
[9]  
Hon D.N.S., 2000, WOOD CELLULOSIC CHEM
[10]   Highly conductive paper for energy-storage devices [J].
Hu, Liangbing ;
Choi, Jang Wook ;
Yang, Yuan ;
Jeong, Sangmoo ;
La Mantia, Fabio ;
Cui, Li-Feng ;
Cui, Yi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (51) :21490-21494