Coupling of a dipolar emitter into one-dimensional surface plasmon

被引:35
作者
Barthes, Julien [1 ]
Bouhelier, Alexandre [1 ]
Dereux, Alain [1 ]
des Francs, Gerard Colas [1 ]
机构
[1] Univ Bourgogne, CNRS, Lab Interdisciplinaire Carnot Bourgogne ICB, UMR 6303, F-21078 Dijon, France
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
关键词
ENERGY-TRANSFER; NEAR-FIELD; EMISSION; NANOFIBER; MODES; GAIN;
D O I
10.1038/srep02734
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum plasmonics relies on a new paradigm for light-matter interaction. It benefits from strong confinement of surface plasmon polaritons (SPP) that ensures efficient coupling at a deep subwavelength scale, instead of working with a long lifetime cavity polariton that increases the duration of interaction. The large bandwidth and the strong confinement of one dimensional SPP enable controlled manipulation of a nearby quantum emitter. This paves the way to ultrafast nanooptical devices. However, the large SPP bandwidth originates from strong losses so that a clear understanding of the coupling process is needed. In this report, we investigate in details the coupling between a single emitter and a plasmonic nanowire, but also SPP mediated coupling between two emitters. We notably clarify the role of losses in the Purcell factor, unavoidable to achieve nanoscale confinement down to 10(-4)(lambda/n)(3). Both the retarded and band-edge quasi-static regimes are discussed.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Forster energy transfer in an optical microcavity [J].
Andrew, P ;
Barnes, WL .
SCIENCE, 2000, 290 (5492) :785-788
[2]   Surface plasmon Fourier optics [J].
Archambault, A. ;
Teperik, T. V. ;
Marquier, F. ;
Greffet, J. J. .
PHYSICAL REVIEW B, 2009, 79 (19)
[3]   Purcell factor for a point-like dipolar emitter coupled to a two-dimensional plasmonic waveguide [J].
Barthes, J. ;
Francs, G. Colas des ;
Bouhelier, A. ;
Weeber, J. -C. ;
Dereux, A. .
PHYSICAL REVIEW B, 2011, 84 (07)
[4]   Surface plasmon-polariton amplifiers and lasers [J].
Berini, Pierre ;
De Leon, Israel .
NATURE PHOTONICS, 2012, 6 (01) :16-24
[5]   Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling [J].
Birowosuto, Muhammad Danang ;
Sumikura, Hisashi ;
Matsuo, Shinji ;
Taniyama, Hideaki ;
van Veldhoven, Peter J. ;
Noetzel, Richard ;
Notomi, Masaya .
SCIENTIFIC REPORTS, 2012, 2
[6]   A steady-state superradiant laser with less than one intracavity photon [J].
Bohnet, Justin G. ;
Chen, Zilong ;
Weiner, Joshua M. ;
Meiser, Dominic ;
Holland, Murray J. ;
Thompson, James K. .
NATURE, 2012, 484 (7392) :78-81
[7]   Strong coupling of single emitters to surface plasmons [J].
Chang, D. E. ;
Sorensen, A. S. ;
Hemmer, P. R. ;
Lukin, M. D. .
PHYSICAL REVIEW B, 2007, 76 (03)
[8]   A single-photon transistor using nanoscale surface plasmons [J].
Chang, Darrick E. ;
Sorensen, Anders S. ;
Demler, Eugene A. ;
Lukin, Mikhail D. .
NATURE PHYSICS, 2007, 3 (11) :807-812
[9]   Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement [J].
Chen, Guang-Yin ;
Lambert, Neill ;
Chou, Chung-Hsien ;
Chen, Yueh-Nan ;
Nori, Franco .
PHYSICAL REVIEW B, 2011, 84 (04)
[10]   Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics [J].
Chen, Y. N. ;
Chen, G. Y. ;
Chuu, D. S. ;
Brandes, T. .
PHYSICAL REVIEW A, 2009, 79 (03)