Phylogenomics reveals a new 'megagroup' including most photosynthetic eukaryotes

被引:193
作者
Burki, Fabien [1 ]
Shalchian-Tabrizi, Kamran [2 ]
Pawlowski, Jan [1 ]
机构
[1] Univ Geneva, Dept Zool & Anim Biol, CH-1211 Geneva 4, Switzerland
[2] Univ Oslo, Dept Biol, Microbial Evolut Res Grp, N-0316 Oslo, Norway
关键词
eukaryote evolution; deep phylogeny; phylogenomics; endosymbiosis; root; megagroup;
D O I
10.1098/rsbl.2008.0224
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Advances in molecular phylogeny of eukaryotes have suggested a tree composed of a small number of supergroups. Phylogenomics recently established the relationships between some of these large assemblages, yet the deepest nodes are still unresolved. Here, we investigate early evolution among the major eukaryotic supergroups using the broadest multigene dataset to date (65 species, 135 genes). Our analyses provide strong support for the clustering of plants, chromalveolates, rhizarians, haptophytes and cryptomonads, thus linking nearly all photosynthetic lineages and raising the question of a possible unique origin of plastids. At its deepest level, the tree of eukaryotes now receives strong support for two monophyletic megagroups comprising most of the eukaryotic diversity.
引用
收藏
页码:366 / 369
页数:4
相关论文
共 25 条
[1]   A cyanobacterial gene in nonphotosynthetic protists - An early chloroplast acquisition in eukaryotes? [J].
Andersson, JO ;
Roger, AJ .
CURRENT BIOLOGY, 2002, 12 (02) :115-119
[2]   Root of the eukaryota tree as inferred from combined maximum likelihood analyses of multiple molecular sequence data [J].
Arisue, N ;
Hasegawa, M ;
Hashimoto, T .
MOLECULAR BIOLOGY AND EVOLUTION, 2005, 22 (03) :409-420
[3]   How do endosymbionts become organelles? Understanding early events in plastid evolution [J].
Bhattacharya, Debashish ;
Archibald, John M. ;
Weber, Andreas P. M. ;
Reyes-Prieto, Adrian .
BIOESSAYS, 2007, 29 (12) :1239-1246
[4]   Phylogenomics Reshuffles the Eukaryotic Supergroups [J].
Burki, Fabien ;
Shalchian-Tabrizi, Kamran ;
Minge, Marianne ;
Skjaeveland, Asmund ;
Nikolaev, Sergey I. ;
Jakobsen, Kjetill S. ;
Pawlowski, Jan .
PLOS ONE, 2007, 2 (08)
[5]   The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa [J].
Cavalier-Smith, T .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2002, 52 :297-354
[6]   Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of Rhizaria with Chromalveolates [J].
Hackett, Jeremiah D. ;
Yoon, Hwan Su ;
Li, Shenglan ;
Reyes-Prieto, Adrian ;
Ruemmele, Susanne E. ;
Bhattacharya, Debashish .
MOLECULAR BIOLOGY AND EVOLUTION, 2007, 24 (08) :1702-1713
[7]   RETRACTED: TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics - art. no. 18 (Retracted article. See vol. 15, 243, 2015) [J].
Jobb, G ;
von Haeseler, A ;
Strimmer, K .
BMC EVOLUTIONARY BIOLOGY, 2004, 4 (1)
[8]   MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform [J].
Katoh, K ;
Misawa, K ;
Kuma, K ;
Miyata, T .
NUCLEIC ACIDS RESEARCH, 2002, 30 (14) :3059-3066
[9]   The tree of eukaryotes [J].
Keeling, PJ ;
Burger, G ;
Durnford, DG ;
Lang, BF ;
Lee, RW ;
Pearlman, RE ;
Roger, AJ ;
Gray, MW .
TRENDS IN ECOLOGY & EVOLUTION, 2005, 20 (12) :670-676
[10]   Evolutionary relationships of apusomonads inferred from taxon-rich analyses of 6 nuclear encoded genes [J].
Kim, Eunsoo ;
Simpson, Alastair G. B. ;
Graham, Linda E. .
MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (12) :2455-2466