Microfluidic electronics

被引:248
作者
Cheng, Shi [1 ]
Wu, Zhigang [2 ]
机构
[1] Ericsson AB, SE-16480 Stockholm, Sweden
[2] Uppsala Univ, Dept Engn Sci, SE-75121 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
GALLIUM-INDIUM EGAIN; LIQUID-METAL; CIRCUITS; RIBBONS; ALLOY; FABRICATION; DESIGN;
D O I
10.1039/c2lc21176a
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microfluidics, a field that has been well-established for several decades, has seen extensive applications in the areas of biology, chemistry, and medicine. However, it might be very hard to imagine how such soft microfluidic devices would be used in other areas, such as electronics, in which stiff, solid metals, insulators, and semiconductors have previously dominated. Very recently, things have radically changed. Taking advantage of native properties of microfluidics, advances in microfluidics-based electronics have shown great potential in numerous new appealing applications, e. g. bio-inspired devices, body-worn healthcare and medical sensing systems, and ergonomic units, in which conventional rigid, bulky electronics are facing insurmountable obstacles to fulfil the demand on comfortable user experience. Not only would the birth of microfluidic electronics contribute to both the microfluidics and electronics fields, but it may also shape the future of our daily life. Nevertheless, microfluidic electronics are still at a very early stage, and significant efforts in research and development are needed to advance this emerging field. The intention of this article is to review recent research outcomes in the field of microfluidic electronics, and address current technical challenges and issues. The outlook of future development in microfluidic electronic devices and systems, as well as new fabrication techniques, is also discussed. Moreover, the authors would like to inspire both the microfluidics and electronics communities to further exploit this newly-established field.
引用
收藏
页码:2782 / 2791
页数:10
相关论文
共 75 条
[1]   Materials and Applications for Large Area Electronics: Solution-Based Approaches [J].
Arias, Ana Claudia ;
MacKenzie, J. Devin ;
McCulloch, Iain ;
Rivnay, Jonathan ;
Salleo, Alberto .
CHEMICAL REVIEWS, 2010, 110 (01) :3-24
[2]   Semiconductor wires and ribbons for high-performance flexible electronics [J].
Baca, Alfred J. ;
Ahn, Jong-Hyun ;
Sun, Yugang ;
Meitl, Matthew A. ;
Menard, Etienne ;
Kim, Hoon-Sik ;
Choi, Won Mook ;
Kim, Dae-Hyeong ;
Huang, Young ;
Rogers, John A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (30) :5524-5542
[3]   Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers [J].
Baca, Alfred J. ;
Meitl, Matthew A. ;
Ko, Heung Cho ;
Mack, Shawn ;
Kim, Hoon-Sik ;
Dong, Jingyan ;
Ferreira, Placid M. ;
Rogers, John A. .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (16) :3051-3062
[4]   GALLIUM METAL RECOVERY [J].
BAUTISTA, RG .
JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 1989, 41 (06) :30-31
[5]   ELECTRO-WETTING DISPLAYS [J].
BENI, G ;
HACKWOOD, S .
APPLIED PHYSICS LETTERS, 1981, 38 (04) :207-209
[6]   Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer [J].
Bowden, N ;
Brittain, S ;
Evans, AG ;
Hutchinson, JW ;
Whitesides, GM .
NATURE, 1998, 393 (6681) :146-149
[7]   Design and fabrication of elastic interconnections for stretchable electronic circuits [J].
Brosteaux, Dominique ;
Axisa, Fabrice ;
Gonzalez, Mario ;
Vanfleteren, Jan .
IEEE ELECTRON DEVICE LETTERS, 2007, 28 (07) :552-554
[8]  
Cadwallader L. C., 2003, EN FAC CONTR GROUP E
[9]   Design and implementation of advanced systems in a flexible-stretchable technology for biomedical applications [J].
Carta, R. ;
Jourand, P. ;
Hermans, B. ;
Thone, J. ;
Brosteaux, D. ;
Vervust, T. ;
Bossuyt, F. ;
Axisa, F. ;
Vanfleteren, J. ;
Puers, R. .
SENSORS AND ACTUATORS A-PHYSICAL, 2009, 156 (01) :79-87
[10]   Materials of Controlled Shape and Stiffness with Photocurable Microfluidic Endoskeleton [J].
Chang, Suk Tai ;
Ucar, Ahmet Burak ;
Swindlehurst, Garrett R. ;
Bradley, Robert O., IV ;
Renk, Frederick J. ;
Velev, Orlin D. .
ADVANCED MATERIALS, 2009, 21 (27) :2803-+