Semiconductor wires and ribbons for high-performance flexible electronics

被引:262
作者
Baca, Alfred J. [2 ]
Ahn, Jong-Hyun [2 ,5 ,7 ]
Sun, Yugang [6 ]
Meitl, Matthew A. [2 ,5 ]
Menard, Etienne [2 ,5 ]
Kim, Hoon-Sik [2 ,5 ]
Choi, Won Mook [2 ,5 ]
Kim, Dae-Hyeong [2 ,5 ]
Huang, Young [3 ,4 ]
Rogers, John A. [1 ,2 ]
机构
[1] Univ Illinois, Dept Chem, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[2] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
[3] Northwestern Univ, Dept Civil Environm Engn, Evanston, IL 60208 USA
[4] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
[5] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[6] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[7] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 440746, South Korea
关键词
lithography; macroelectronics; microfabrication; nanostructures; wavy silicon;
D O I
10.1002/anie.200703238
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This article reviews the properties, fabrication and assembly of inorganic semiconductor materials that can be used as active building blocks to form high-performance transistors and circuits for flexible and bendable large-area electronics. Obtaining high performance on low temperature polymeric substrates represents a technical challenge for macroelectronics. Therefore, the fabrication of high quality inorganic materials in the form of wires, ribbons, membranes, sheets, and bars formed by bottom-up and top-down approaches, and the assembly strategies used to deposit these thin films onto plastic substrates will be emphasized. Substantial progress has been made in creating inorganic semiconducting materials that are stretchable and bendable, and the description of the mechanics of these form factors will be presented, including circuits in three-dimensional layouts. Finally, future directions and promising areas of research will be described. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:5524 / 5542
页数:19
相关论文
共 190 条
[1]   Design and fabrication of high-performance polycrystalline silicon thin-film transistor circuits on flexible steel foils [J].
Afentakis, T ;
Hatalis, M ;
Voutsas, AT ;
Hartzell, J .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (04) :815-822
[2]  
AFENTAKIS T, 2006, IEEE T ELECTRON DEV, V27, P460
[3]   Bendable integrated circuits on plastic substrates by use of printed ribbons of single-crystalline silicon [J].
Ahn, Jong-Hyun ;
Kim, Hoon-Sik ;
Menard, Etienne ;
Lee, Keon Jae ;
Zhu, Zhengtao ;
Kim, Dae-Hyeong ;
Nuzzo, Ralph G. ;
Rogers, John A. .
APPLIED PHYSICS LETTERS, 2007, 90 (21)
[4]   Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials [J].
Ahn, Jong-Hyun ;
Kim, Hoon-Sik ;
Lee, Keon Jae ;
Jeon, Seokwoo ;
Kang, Seong Jun ;
Sun, Yugang ;
Nuzzo, Ralph G. ;
Rogers, John A. .
SCIENCE, 2006, 314 (5806) :1754-1757
[5]   High-speed mechanically flexible single-crystal silicon thin-film transistors on plastic substrates [J].
Ahn, Jong-Hyun ;
Kim, Hoon-Sik ;
Lee, Keon Jae ;
Zhu, Zhengtao ;
Menard, Etienne ;
Nuzzo, Ralph G. ;
Rogers, John A. .
IEEE ELECTRON DEVICE LETTERS, 2006, 27 (06) :460-462
[6]   Field-effect transistors based on single semiconducting oxide nanobelts [J].
Arnold, MS ;
Avouris, P ;
Pan, ZW ;
Wang, ZL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (03) :659-663
[7]   6 nm half-pitch lines and 0.04 μm2 static random access memory patterns by nanoimprint lithography [J].
Austin, MD ;
Zhang, W ;
Ge, HX ;
Wasserman, D ;
Lyon, SA ;
Chou, SY .
NANOTECHNOLOGY, 2005, 16 (08) :1058-1061
[8]   Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers [J].
Baca, Alfred J. ;
Meitl, Matthew A. ;
Ko, Heung Cho ;
Mack, Shawn ;
Kim, Hoon-Sik ;
Dong, Jingyan ;
Ferreira, Placid M. ;
Rogers, John A. .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (16) :3051-3062
[9]   Single-crystalline gallium nitride nanobelts [J].
Bae, SY ;
Seo, HW ;
Park, J ;
Yang, H ;
Park, JC ;
Lee, SY .
APPLIED PHYSICS LETTERS, 2002, 81 (01) :126-128
[10]   Nanowire photonic circuit elements [J].
Barrelet, CJ ;
Greytak, AB ;
Lieber, CM .
NANO LETTERS, 2004, 4 (10) :1981-1985