6 nm half-pitch lines and 0.04 μm2 static random access memory patterns by nanoimprint lithography

被引:117
作者
Austin, MD [1 ]
Zhang, W [1 ]
Ge, HX [1 ]
Wasserman, D [1 ]
Lyon, SA [1 ]
Chou, SY [1 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
关键词
D O I
10.1088/0957-4484/16/8/010
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A key issue in nanoimprint lithography (NIL) is determining the ultimate pitch resolution achievable for various pattern shapes and their critical dimensional control. To this end, we demonstrated the fabrication of 6 nm half-pitch gratings and 0.04 mu m(2) cell area SRAM metal interconnects with 20 nm line half-pitch in resist by NIL. The mould for the 6 nm half-pitch grating was fabricated by cleaving a GaAs/Al0.7Ga0.3As superlattice grown on GaAs with molecular beam epitaxy, and selectively etching away the Al0.7Ga0.3As layers in dilute hydrofluoric acid. The mould for the 0.04 mu m(2) SRAM metal interconnects was fabricated in silicon dioxide using 35 kV electron beam lithography with polystyrene as a negative resist and a reactive ion etch with the resist as mask. Imprints from both moulds showed excellent fidelity and critical dimension control.
引用
收藏
页码:1058 / 1061
页数:4
相关论文
共 18 条
[1]   Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography [J].
Austin, MD ;
Ge, HX ;
Wu, W ;
Li, MT ;
Yu, ZN ;
Wasserman, D ;
Lyon, SA ;
Chou, SY .
APPLIED PHYSICS LETTERS, 2004, 84 (26) :5299-5301
[2]   Step and flash imprint lithography: Template surface treatment and defect analysis [J].
Bailey, T ;
Choi, BJ ;
Colburn, M ;
Meissl, M ;
Shaya, S ;
Ekerdt, JG ;
Sreenivasan, SV ;
Willson, CG .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (06) :3572-3577
[3]  
BORODOVSKY Y, 2002, LITHOGRAPHY STRATEGY
[4]   First lithographic results from the extreme ultraviolet Engineering Test Stand [J].
Chapman, HN ;
Ray-Chaudhuri, AK ;
Tichenor, DA ;
Replogle, WC ;
Stulen, RH ;
Kubiak, GD ;
Rockett, PD ;
Klebanoff, LE ;
O'Connell, D ;
Leung, AH ;
Jefferson, KL ;
Wronosky, JB ;
Taylor, JS ;
Hale, LC ;
Blaedel, K ;
Spiller, EA ;
Sommargren, GE ;
Folta, JA ;
Sweeney, DW ;
Gullikson, EM ;
Naulleau, P ;
Goldberg, KA ;
Bokor, J ;
Attwood, DT ;
Mickan, U ;
Hanzen, R ;
Panning, E ;
Yan, PY ;
Gwyn, CW ;
Lee, SH .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2001, 19 (06) :2389-2395
[5]  
CHEN Y, 2002, Patent No. 6407443
[6]   Imprint lithography with 25-nanometer resolution [J].
Chou, SY ;
Krauss, PR ;
Renstrom, PJ .
SCIENCE, 1996, 272 (5258) :85-87
[7]   Sub-10 nm imprint lithography and applications [J].
Chou, SY ;
Krauss, PR ;
Zhang, W ;
Guo, LJ ;
Zhuang, L .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (06) :2897-2904
[8]   SUB-30-NM LITHOGRAPHY IN A NEGATIVE ELECTRON-BEAM RESIST WITH A VACUUM SCANNING TUNNELING MICROSCOPE [J].
DOBISZ, EA ;
MARRIAN, CRK .
APPLIED PHYSICS LETTERS, 1991, 58 (22) :2526-2528
[9]   Nanobeam process system: An ultrahigh vacuum electron beam lithography system with 3 nm probe size [J].
Hiroshima, H ;
Okayama, S ;
Ogura, M ;
Komuro, M ;
Nakazawa, H ;
Nakagawa, Y ;
Ohi, K ;
Tanaka, K .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1995, 13 (06) :2514-2517
[10]   Polymer imprint lithography with molecular-scale resolution [J].
Hua, F ;
Sun, YG ;
Gaur, A ;
Meitl, MA ;
Bilhaut, L ;
Rotkina, L ;
Wang, JF ;
Geil, P ;
Shim, M ;
Rogers, JA ;
Shim, A .
NANO LETTERS, 2004, 4 (12) :2467-2471