Towards an exact description of electronic wavefunctions in real solids

被引:420
作者
Booth, George H. [1 ]
Grueneis, Andreas [1 ,2 ,3 ]
Kresse, Georg [2 ,3 ]
Alavi, Ali [1 ]
机构
[1] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[2] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[3] Ctr Computat Mat Sci, A-1090 Vienna, Austria
基金
英国工程与自然科学研究理事会; 奥地利科学基金会;
关键词
NOBEL LECTURE; SYSTEMS; APPROXIMATION; MODELS;
D O I
10.1038/nature11770
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The properties of all materials arise largely from the quantum mechanics of their constituent electrons under the influence of the electric field of the nuclei. The solution of the underlying many-electron Schrodinger equation is a 'non-polynomial hard' problem, owing to the complex interplay of kinetic energy, electron-electron repulsion and the Pauli exclusion principle. The dominant computational method for describing such systems has been density functional theory. Quantum-chemical methods-based on an explicit ansatz for the many-electron wavefunctions and, hence, potentially more accurate-have not been fully explored in the solid state owing to their computational complexity, which ranges from strongly exponential to high-order polynomial in system size. Here we report the application of an exact technique, full configuration interaction quantum Monte Carlo to a variety of real solids, providing reference many-electron energies that are used to rigorously benchmark the standard hierarchy of quantum-chemical techniques, up to the 'gold standard' coupled-cluster ansatz, including single, double and perturbative triple particle-hole excitation operators. We show the errors in cohesive energies predicted by this method to be small, indicating the potential of this computationally polynomial scaling technique to tackle current solid-state problems.
引用
收藏
页码:365 / 370
页数:6
相关论文
共 44 条
[31]   Calculation of properties of crystalline lithium hydride using correlated wave function theory [J].
Nolan, S. J. ;
Gillan, M. J. ;
Alfe, D. ;
Allan, N. L. ;
Manby, F. R. .
PHYSICAL REVIEW B, 2009, 80 (16)
[32]   Logarithm second-order many-body perturbation method for extended systems [J].
Ohnishi, Yu-ya ;
Hirata, So .
JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (03)
[33]  
Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.77.3865
[34]   Nobel Lecture: Quantum chemical models [J].
Pople, JA .
REVIEWS OF MODERN PHYSICS, 1999, 71 (05) :1267-1274
[35]   Pressure-induced diamond to β-tin transition in bulk silicon: A quantum Monte Carlo study [J].
Purwanto, Wirawan ;
Krakauer, Henry ;
Zhang, Shiwei .
PHYSICAL REVIEW B, 2009, 80 (21)
[36]   A 5TH-ORDER PERTURBATION COMPARISON OF ELECTRON CORRELATION THEORIES [J].
RAGHAVACHARI, K ;
TRUCKS, GW ;
POPLE, JA ;
HEADGORDON, M .
CHEMICAL PHYSICS LETTERS, 1989, 157 (06) :479-483
[37]   Inhomogeneous backflow transformations in quantum Monte Carlo calculations [J].
Rios, P. Lopez ;
Ma, A. ;
Drummond, N. D. ;
Towler, M. D. ;
Needs, R. J. .
PHYSICAL REVIEW E, 2006, 74 (06)
[38]   Improved hybrid functional for solids: The HSEsol functional [J].
Schimka, Laurids ;
Harl, Judith ;
Kresse, Georg .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (02)
[39]   Full configuration interaction perspective on the homogeneous electron gas [J].
Shepherd, James J. ;
Booth, George ;
Grueneis, Andreas ;
Alavi, Ali .
PHYSICAL REVIEW B, 2012, 85 (08)
[40]   Communications: Explicitly correlated second-order Moller-Plesset perturbation method for extended systems [J].
Shiozaki, Toru ;
Hirata, So .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)