The structure of a ketoreductase determines the organization of the β-carbon processing enzymes of modular polyketide synthases

被引:188
作者
Keatinge-Clay, AT [1 ]
Stroud, RM [1 ]
机构
[1] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94107 USA
关键词
D O I
10.1016/j.str.2006.01.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The structure of the ketoreductase (KR) from the first module of the erythromycin synthase with NADPH bound was solved to 1.79 angstrom resolution. The 51 kDa domain has two subdomains, each similar to a shortchain dehydrogenase/reductase (SDR) monomer. One subdomain has a truncated Rossmann fold and serves a purely structural role stabilizing the other subdomain, which catalyzes the reduction of the beta-carbonyl of a polyketide and possibly the epimerization of an alpha-substituent. The structure enabled us to define the domain boundaries of KR, the dehydratase (DH), and the enoylreductase (ER). It also constrains the three-dimensional organization of these domains within a module, revealing that KR does not make dimeric contacts across the 2-fold axis of the module. The quaternary structure elucidates how substrates are shuttled between the active sites of polyketide synthases (PKSs), as well as related fatty acid synthases (FASs), and suggests how domains can be swapped to make hybrid synthases that produce novel polyketides.
引用
收藏
页码:737 / 748
页数:12
相关论文
共 41 条
[1]  
APARICIO JF, 1994, J BIOL CHEM, V269, P8524
[2]   Structure and molecular organization of mammalian fatty acid synthase [J].
Asturias, FJ ;
Chadick, JZ ;
Cheung, IK ;
Stark, H ;
Witkowski, A ;
Joshi, AK ;
Smith, S .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2005, 12 (03) :225-232
[3]   A functional chimeric modular polyketide synthase generated via domain replacement [J].
Bedford, D ;
Jacobsen, JR ;
Luo, GL ;
Cane, DE ;
Khosla, C .
CHEMISTRY & BIOLOGY, 1996, 3 (10) :827-831
[4]   The structure of docking domains in modular polyketide synthases [J].
Broadhurst, RW ;
Nietlispach, D ;
Wheatcroft, MP ;
Leadlay, PF ;
Weissman, KJ .
CHEMISTRY & BIOLOGY, 2003, 10 (08) :723-731
[5]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[6]   The stereochemistry of ketoreduction [J].
Caffrey, P .
CHEMISTRY & BIOLOGY, 2005, 12 (10) :1060-1062
[7]   Type I polyketide synthase requiring a discrete acyltransferase for polyketide biosynthesis [J].
Cheng, YQ ;
Tang, GL ;
Shen, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (06) :3149-3154
[8]   Solution structure of the actinorhodin polyketide synthase acyl carrier protein from Streptomyces coelicolor A3(2) [J].
Crump, MP ;
Crosby, J ;
Dempsey, CE ;
Parkinson, JA ;
Murray, M ;
Hopwood, DA ;
Simpson, TJ .
BIOCHEMISTRY, 1997, 36 (20) :6000-6008
[9]   ORGANIZATION OF THE ENZYMATIC DOMAINS IN THE MULTIFUNCTIONAL POLYKETIDE SYNTHASE INVOLVED IN ERYTHROMYCIN FORMATION IN SACCHAROPOLYSPORA-ERYTHRAEA [J].
DONADIO, S ;
KATZ, L .
GENE, 1992, 111 (01) :51-60
[10]   Structural and sequence comparisons of quinone oxidoreductase, zeta-crystallin, and glucose and alcohol dehydrogenases [J].
Edwards, KJ ;
Barton, JD ;
Rossjohn, J ;
Thorn, JM ;
Taylor, GL ;
Ollis, DL .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1996, 328 (01) :173-183