Development and assessment of an integrated biomass-based multi-generation energy system

被引:234
作者
Ahmadi, Pouria [1 ]
Dincer, Ibrahim [1 ]
Rosen, Marc A. [1 ]
机构
[1] UOIT, Fac Engn & Appl Sci, Oshawa, ON L1H 7K4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Biomass; Greenhouse gas emission; Energy; Exergy; Efficiency; Multi-generation; ORGANIC RANKINE-CYCLE; HYDROGEN-PRODUCTION; EXERGY ANALYSES; MULTIOBJECTIVE OPTIMIZATION; EVOLUTIONARY ALGORITHM; ENVIRONMENTAL-ANALYSES; TRIGENERATION SYSTEM; PERFORMANCE ANALYSIS; POWER-PLANT; FUEL;
D O I
10.1016/j.energy.2013.04.024
中图分类号
O414.1 [热力学];
学科分类号
摘要
A new multi-generation system based on a biomass combustor, an organic Rankine cycle (ORC), an absorption chiller and a proton exchange membrane electrolyzer to produce hydrogen, and a domestic water heater for hot water production, is proposed and thermodynamically assessed. Exergy analysis is conducted to determine the irreversibilities in each component and the system performance. In addition, an environmental impact assessment of the multi-generation system is performed, and the potential reduction in CO2 emissions when the system shifts from power generation to multi-generation are investigated. To understand system performance more comprehensively, a parametric study is performed to investigate the effects of several important design parameters on the energy and exergy efficiencies of the system. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:155 / 166
页数:12
相关论文
共 26 条
[1]   Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis [J].
Ahmadi, Pouria ;
Dincer, Ibrahim ;
Rosen, Marc A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (04) :1795-1805
[2]   Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration [J].
Ahmadi, Pouria ;
Dincer, Ibrahim ;
Rosen, Marc A. .
ENERGY CONVERSION AND MANAGEMENT, 2012, 64 :447-453
[3]   Multi-objective exergy-based optimization of a polygeneration energy system using an evolutionary algorithm [J].
Ahmadi, Pouria ;
Rosen, Marc A. ;
Dincer, Ibrahim .
ENERGY, 2012, 46 (01) :21-31
[4]   Greenhouse gas emission and exergo-environmental analyses of a trigeneration energy system [J].
Ahmadi, Pouria ;
Rosen, Marc A. ;
Dincer, Ibrahim .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2011, 5 (06) :1540-1549
[5]   Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants [J].
Ahmadi, Pouria ;
Dincer, Ibrahim ;
Rosen, Marc A. .
ENERGY, 2011, 36 (10) :5886-5898
[6]   Thermodynamic and exergoenvironmental analyses, and multi-objective optimization of a gas turbine power plant [J].
Ahmadi, Pouria ;
Dincer, Ibrahim .
APPLIED THERMAL ENGINEERING, 2011, 31 (14-15) :2529-2540
[7]   Thermodynamic analysis and thermoeconomic optimization of a dual pressure combined cycle power plant with a supplementary firing unit [J].
Ahmadi, Pouria ;
Dincer, Ibrahim .
ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (05) :2296-2308
[8]   Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle [J].
Al-Sulaiman, Fahad A. ;
Dincer, Ibrahim ;
Hamdullahpur, Feridun .
ENERGY, 2012, 45 (01) :975-985
[9]   Performance assessment of a novel system using parabolic trough solar collectors for combined cooling, heating, and power production [J].
Al-Sulaiman, Fahad A. ;
Hamdullahpur, Feridun ;
Dincer, Ibrahim .
RENEWABLE ENERGY, 2012, 48 :161-172
[10]   Biomass resources for energy in North-eastern Brazil [J].
Anselmo, P ;
Badr, O .
APPLIED ENERGY, 2004, 77 (01) :51-67