Size-Dependent Trap-Assisted Auger Recombination in Semiconductor Nanocrystals

被引:91
作者
Cohn, Alicia W. [1 ]
Schimpf, Alina M. [1 ]
Gunthardt, Carolyn E. [1 ]
Gamelin, Daniel R. [1 ]
机构
[1] Univ Washington, Dept Chem, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
semiconductor nanocrystal; quantum dot; Auger recombination; trap; size dependence; CARRIER MULTIPLICATION YIELDS; ZNO NANOCRYSTALS; QUANTUM DOTS; MULTIEXCITONS; QUANTIZATION; IONIZATION; TRANSITION; PARTICLES; EMISSION; GAIN;
D O I
10.1021/nl400503s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The acceleration of Auger-type multicarrier recombination in semiconductor nanocrystals impedes the development of many quantum-dot photonics, solar-cell, lighting, and lasing technologies. To date, only multiexciton and charged-exciton Auger recombination channels are known to show strong size dependence in nanocrystals. Here, we report the first observation of strongly accelerated "trap-assisted" Auger recombination rates in semiconductor nanocrystals. Trap-assisted Auger recombination in ZnO nanocrystals, involving the recombination of conduction-band electrons with deeply trapped holes via nonradiative energy transfer to extra conduction-band electrons, has been probed using time-resolved photoluminescence and transient absorption spectroscopies. We demonstrate that this trap-assisted Auger recombination accelerates dramatically with decreasing nanocrystal size, having recombination times of >1 ns in the largest nanocrystals but only similar to 80 ps in the smallest. These trap-assisted Auger recombination rates are shown to scale with inverse nanocrystal radius squared (1/tau(Auger) similar to R-2). Because surface carrier traps are ubiquitous in colloidal semiconductor nanocrystals, such fast trap-assisted Auger recombination is likely more prevalent in semiconductor nanocrystal photophysics than previously recognized.
引用
收藏
页码:1810 / 1815
页数:6
相关论文
共 38 条
[1]   Multiexcitons confined within a subexcitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals [J].
Achermann, M ;
Hollingsworth, JA ;
Klimov, VI .
PHYSICAL REVIEW B, 2003, 68 (24)
[2]   Off-State Quantum Yields in the Presence of Surface Trap States in CdSe Nanocrystals: The Inadequacy of the Charging Model To Explain Blinking [J].
Califano, Marco .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (37) :18051-18054
[3]   Photoinduced Surface Trapping and the Observed Carrier Multiplication Yields in Static CdSe Nanocrystal Samples [J].
Califano, Marco .
ACS NANO, 2011, 5 (05) :3614-3621
[4]   AUGER IONIZATION OF SEMICONDUCTOR QUANTUM DROPS IN A GLASS MATRIX [J].
CHEPIC, DI ;
EFROS, AL ;
EKIMOV, AI ;
VANOV, MG ;
KHARCHENKO, VA ;
KUDRIAVTSEV, IA ;
YAZEVA, TV .
JOURNAL OF LUMINESCENCE, 1990, 47 (03) :113-127
[5]   Photocharging ZnO Nanocrystals: Picosecond Hole Capture, Electron Accumulation, and Auger Recombination [J].
Cohn, Alicia W. ;
Janssen, Nils ;
Mayer, James M. ;
Gamelin, Daniel R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (38) :20633-20642
[6]  
Dang C, 2012, NAT NANOTECHNOL, V7, P335, DOI [10.1038/NNANO.2012.61, 10.1038/nnano.2012.61]
[7]  
Efros A, 2003, NAN SCI TEC, P52
[8]   PHOTOCHEMISTRY AND RADIATION-CHEMISTRY OF COLLOIDAL SEMICONDUCTORS .23. ELECTRON STORAGE ON ZNO PARTICLES AND SIZE QUANTIZATION [J].
HAASE, M ;
WELLER, H ;
HENGLEIN, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1988, 92 (02) :482-487
[9]   Trion Decay in Colloidal Quantum Dots [J].
Jha, Praket P. ;
Guyot-Sionnest, Philippe .
ACS NANO, 2009, 3 (04) :1011-1015
[10]   Multiexcitons in Semiconductor Nanocrystals: A Platform for Optoelectronics at High Carrier Concentration [J].
Kambhampati, Patanjali .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (09) :1182-1190