Use of ANN modelling in structure-retention relationships of diuretics in RP-HPLC

被引:27
作者
Agatonovic-Kustrin, S
Zecevic, M
Zivanovic, L
机构
[1] Univ Otago, Sch Med, Dunedin, New Zealand
[2] Fac Pharm Belgrade, Inst Pharmaceut Chem & Drug Anal, YU-11000 Belgrade, Serbia, Yugoslavia
关键词
amiloride; hydrochlorothiazide; methylclothiazide; methyldopa; RP-HPLC; SRR; ANNs;
D O I
10.1016/S0731-7085(99)00133-8
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Structure-retention relationship study, conducted by RP-HPLC, was used to investigate physical chemical parameters related to the RP retention times of amiloride, hydrochlorothiazide and methyldopa in order to predict the separation of amiloride and methylclothiazide from Lometazid(R) tablets. Retention data were obtained with an ODS column using a mobile phase methanol-water (pH adjusted with phosphoric acid). Physical chemical properties were calculated directly from the molecular structure. Artificial neural networks (ANNs) were used to correlate chromatograms retention times with mobile phase composition and pH, and with physical chemical properties of amiloride, hydrochlorothiazide and methyldopa and to predict separation of amiloride and methylclothiazide from Lometazid(R) tablets. Sensitivity analysis was performed to interpret the meaning of the descriptors included in the models. Results confirmed the dominant role of the polar modifier in such chromatographic systems. Within a series of solutes chromatographed under identical conditions, the retention parameters could be approximated by a non-linear combination of log P, log D, pK(a), surface tension, parachor, molar volume and to minor extend by polarisability, rexractivity index and density. This study has demonstrated that the use ANNs techniques can result in much more efficient use of experimental information. As HPLC is the most popular analytical technique, improvements in HPLC methods development can yield significant gains in the overall analytical effort. The ANNs extension presented could be the method of choice in some advanced research settings and serves as an indication of the broad potential of neural networks in chromatography analysis. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:95 / 103
页数:9
相关论文
共 22 条
[11]   DETERMINATION OF LOG POCT VALUES OF CHLORO-SUBSTITUTED BENZENES, TOLUENES AND ANILINES BY HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY ON ODS-SILICA [J].
KONEMANN, H ;
ZELLE, R ;
BUSSER, F ;
HAMMERS, WE .
JOURNAL OF CHROMATOGRAPHY, 1979, 178 (02) :559-565
[12]   COMPARISON OF PARAMETERS CURRENTLY USED IN STUDY OF STRUCTURE-ACTIVITY RELATIONSHIPS [J].
LEO, A ;
HANSCH, C ;
CHURCH, C .
JOURNAL OF MEDICINAL CHEMISTRY, 1969, 12 (05) :766-&
[13]   COMPUTER-SIMULATION FOR THE PREDICTION OF SEPARATION AS A FUNCTION OF PH FOR REVERSED-PHASE HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY .1. ACCURACY OF A THEORY-BASED MODEL [J].
LEWIS, JA ;
LOMMEN, DC ;
RADDATZ, WD ;
DOLAN, JW ;
SNYDER, LR ;
MOLNAR, I .
JOURNAL OF CHROMATOGRAPHY, 1992, 592 (1-2) :183-195
[14]  
Lyman W.J., 1990, Handbook of Chemical Property Estimation Methods: Environmental Behavior of Organic Compounds
[15]   PRUNING ALGORITHMS - A SURVEY [J].
REED, R .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1993, 4 (05) :740-747
[16]  
Ripley B. D., 1996, Pattern Recognition and Neural Networks
[17]  
SWANN RL, 1983, RESIDUE REV, V85, P17
[18]  
Taft R. W., 1956, Steric Effect in Organic Chemistry, P556
[19]   RP-HPLC RETENTION DATA FOR MEASURING STRUCTURAL SIMILARITY OF COMPOUNDS FOR QSAR STUDIES [J].
VALKO, K .
JOURNAL OF LIQUID CHROMATOGRAPHY, 1987, 10 (8-9) :1663-1686
[20]  
White H, 1992, ARTIFICIAL NEURAL NE