On the global convergence of a modified augmented Lagrangian linesearch interior-point Newton method for nonlinear programming

被引:24
作者
Argáez, M [1 ]
Tapia, RA
机构
[1] Univ Texas, Dept Math Sci, El Paso, TX 79968 USA
[2] Rice Univ, Dept Computat & Appl Math, Houston, TX 77251 USA
基金
美国国家科学基金会;
关键词
interior-point methods; primal-dual methods; nonlinear programming problems;
D O I
10.1023/A:1015451203254
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a linesearch globalization of the local primal-dual interior-point Newton method for nonlinear programming introduced by El-Bakry, Tapia, Tsuchiya, and Zhang. The linesearch uses a new merit function that incorporates a modification of the standard augmented Lagrangian function and a weak notion of centrality. We establish a global convergence theory and present promising numerical experimentation.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 20 条
[1]  
[Anonymous], B SOC MAT MEXICANA
[2]  
ANSTREICHER KM, 1993, OPTIMIZATIONS METHOD
[3]  
BYRD RH, 1997, 9702 OTC NW U
[4]  
DENNIS JE, 1996, NUMERICAL METHODS UN
[5]   On the formulation and theory of the Newton interior-point method for nonlinear programming [J].
ElBakry, AS ;
Tapia, RA ;
Tsuchiya, T ;
Zhang, Y .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 89 (03) :507-541
[6]  
FADDEEVA VN, 1959, COMPUTATIONAL METHOD
[7]  
Fiacco A.V., 1990, Nonlinear Programming Sequential Unconstrained Minimization Techniques
[8]  
FORSGREN A, 1996, NA3 U CAL SAN DIEG D
[9]  
GAY D, 1994, 15 INT S MATH PROGR
[10]  
Gonzalez MD, 1998, SIAM J OPTIMIZ, V8, P1, DOI 10.1137/S1052623495291793