Stabilized sequential quadratic programming

被引:73
作者
Hager, WW [1 ]
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
关键词
sequential quadratic programming; quadratic convergence; superlinear convergence; degenerate optimization; stabilized SQP; error estimation;
D O I
10.1023/A:1008640419184
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Recently, Wright proposed a stabilized sequential quadratic programming algorithm for inequality constrained optimization. Assuming the Mangasarian-Fromovitz constraint qualification and the existence of a strictly positive multiplier (but possibly dependent constraint gradients), he proved a local quadratic convergence result. In this paper, we establish quadratic convergence in cases where both strict complementarity and the Mangasarian-Fromovitz constraint qualification do not hold. The constraints on the stabilization parameter are relaxed, and linear convergence is demonstrated when the parameter is kept fixed. We show that the analysis of this method can be carried out using recent results for the stability of variational problems.
引用
收藏
页码:253 / 273
页数:21
相关论文
共 19 条
[1]  
Bertsekas D., 2019, Reinforcement Learning and Optimal Control
[2]   GENERALIZED GRADIENTS AND APPLICATIONS [J].
CLARKE, FH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 205 (APR) :247-262
[3]   Characterizations of strong regularity for variational inequalities over polyhedral convex sets [J].
Dontchev, AL ;
Rockafellar, RT .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (04) :1087-1105
[4]   LIPSCHITZIAN STABILITY IN NONLINEAR CONTROL AND OPTIMIZATION [J].
DONTCHEV, AL ;
HAGER, WW .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (03) :569-603
[5]   Lipschitzian stability for state constrained nonlinear optimal control [J].
Dontchev, AL ;
Hager, WW .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (02) :698-718
[6]   OPTIMALITY, STABILITY, AND CONVERGENCE IN NONLINEAR CONTROL [J].
DONTCHEV, AL ;
HAGER, WW ;
POORE, AB ;
YANG, B .
APPLIED MATHEMATICS AND OPTIMIZATION, 1995, 31 (03) :297-326
[7]  
DONTCHEV AL, 1997, EULER APPROXIMATION
[8]  
Ekeland I., 1976, CONVEX ANAL VARIATIO
[9]  
FISCHER A, 1997, ODIFIED WILSON METHO
[10]   LIPSCHITZ CONTINUITY FOR CONSTRAINED PROCESSES [J].
HAGER, WW .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1979, 17 (03) :321-338