Hybrid motor with H+ and Na+-driven components can rotate Vibrio polar flagella by using sodium ions

被引:47
作者
Asai, Y
Kawagishi, I
Sockett, RE
Homma, M [1 ]
机构
[1] Nagoya Univ, Grad Sch Sci, Div Biol Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[2] Univ Nottingham, Queens Med Ctr, Div Genet, Nottingham NG7 2UH, England
关键词
D O I
10.1128/JB.181.20.6332-6338.1999
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The bacterial flagellar motor is a molecular machine that converts ion flux across the membrane into flagellar rotation. The coupling ion is either a proton or a sodium ion. The polar flagellar motor of the marine bacterium Vibrio alginolyticus is driven by sodium ions, and the four protein components, PomA, PomB, MotX, and MotY, are essential for motor function. Among them, PomA and PomB are similar to MotA and MotB of the proton-driven motors, respectively. PomA shows greatest similarity to MotA of the photosynthetic bacterium Rhodobacter sphaeroides. MotA is composed of 253 amino acids, the same length as PomA, and 40% of its residues are identical to those of PomA. R. sphaeroides MotB has high similarity only to the transmembrane region of PomB. To examine whether the R. sphaeroides motor genes can function in place of the pomA and pomB genes of V. alginolyticus, we constructed plasmids including both mot4 and motB or motA alone and transformed them into missense and null pomA-paralyzed mutants of V. alginolyticus. The transformants from both strains showed restored motility, although the swimming speeds were low. On the other hand, pomB mutants were not restored to motility by any plasmid containing motA and/or motB. Next, we tested which ions (proton or sodium) coupled to the hybrid motor function. The motor did not work in sodium-free buffer and was inhibited by phenamil and amiloride, sodium motor-specific inhibitors, but not by a protonophore. Thus, we conclude that the proton motor component, MotA, of R. sphaeroides can generate torque by coupling with the sodium ion flux in place of PomA of V. alginolyticus.
引用
收藏
页码:6332 / 6338
页数:7
相关论文
共 52 条
[1]   UNIDIRECTIONAL, INTERMITTENT ROTATION OF THE FLAGELLUM OF RHODOBACTER-SPHAEROIDES [J].
ARMITAGE, JP ;
MACNAB, RM .
JOURNAL OF BACTERIOLOGY, 1987, 169 (02) :514-518
[2]   Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium [J].
Asai, Y ;
Kojima, S ;
Kato, H ;
Nishioka, N ;
Kawagishi, I ;
Homma, M .
JOURNAL OF BACTERIOLOGY, 1997, 179 (16) :5104-5110
[3]   Effect of viscosity on swimming by the lateral and polar flagella of Vibrio alginolyticus [J].
Atsumi, T ;
Maekawa, Y ;
Yamada, T ;
Kawagishi, I ;
Imae, Y ;
Homma, M .
JOURNAL OF BACTERIOLOGY, 1996, 178 (16) :5024-5026
[4]   SPECIFIC-INHIBITION OF THE NA+-DRIVEN FLAGELLAR MOTORS OF ALKALOPHILIC BACILLUS STRAINS BY THE AMILORIDE ANALOG PHENAMIL [J].
ATSUMI, T ;
SUGIYAMA, S ;
CRAGOE, EJ ;
IMAE, Y .
JOURNAL OF BACTERIOLOGY, 1990, 172 (03) :1634-1639
[5]   POLAR AND LATERAL FLAGELLAR MOTORS OF MARINE VIBRIO ARE DRIVEN BY DIFFERENT ION-MOTIVE FORCES [J].
ATSUMI, T ;
MCCARTER, L ;
IMAE, Y .
NATURE, 1992, 355 (6356) :182-184
[6]   CONSTRUCTION AND PROPERTIES OF A FAMILY OF PACYC184-DERIVED CLONING VECTORS COMPATIBLE WITH PBR322 AND ITS DERIVATIVES [J].
BARTOLOME, B ;
JUBETE, Y ;
MARTINEZ, E ;
DELACRUZ, F .
GENE, 1991, 102 (01) :75-78
[7]  
BLAIR DF, 1991, J MOL BIOL, V221, P1433, DOI 10.1016/0022-2836(91)90943-Z
[8]   THE MOTA PROTEIN OF ESCHERICHIA-COLI IS A PROTON-CONDUCTING COMPONENT OF THE FLAGELLAR MOTOR [J].
BLAIR, DF ;
BERG, HC .
CELL, 1990, 60 (03) :439-449
[9]   HOW BACTERIA SENSE AND SWIM [J].
BLAIR, DF .
ANNUAL REVIEW OF MICROBIOLOGY, 1995, 49 :489-522
[10]   BACTERIAL MOTILITY - MEMBRANE TOPOLOGY OF THE ESCHERICHIA-COLI MOTB PROTEIN [J].
CHUN, SY ;
PARKINSON, JS .
SCIENCE, 1988, 239 (4837) :276-278