NADPH oxidases in cardiovascular health and disease

被引:502
作者
Cave, Alison C. [1 ]
Brewer, Alison C. [1 ]
Narayanapanicker, Anilkumar [1 ]
Ray, Robin [1 ]
Grieve, David J. [1 ]
Walker, Simon [1 ]
Shah, Ajay M. [1 ]
机构
[1] Kings Coll London, Sch Med, Dept Cardiol, Div Cardiovasc, London SE5 9PJ, England
关键词
D O I
10.1089/ars.2006.8.691
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Increased oxidative stress plays an important role in the pathophysiology of cardiovascular diseases such as hypertension, atherosclerosis, diabetes, cardiac hypertrophy, heart failure, and ischemia-reperfusion. Although several sources of reactive oxygen species (ROS) may be involved, a family of NADPH oxidases appears to be especially important for redox signaling and may be amenable to specific therapeutic targeting. These include the prototypic Nox2 isoform-based NADPH oxidase, which was first characterized in neutrophils, as well as other NADPH oxidases such as Nox1 and Nox4. These Nox isoforms are expressed in a cell- and tissue-specific fashion, are subject to independent activation and regulation, and may subserve distinct functions. This article reviews the potential roles of NADPH oxidases in both cardiovascular physiological processes (such as the regulation of vascular tone and oxygen sensing) and pathophysiological processes such as endothelial dysfunction, inflammation, hypertrophy, apoptosis, migration, angiogenesis, and vascular and cardiac remodeling. The complexity of regulation of NADPH oxidases in these conditions may provide the possibility of targeted therapeutic manipulation in a cell-, tissue- and/or pathway-specific manner at appropriate points in the disease process.
引用
收藏
页码:691 / 728
页数:38
相关论文
共 383 条
[21]   A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes [J].
Bánfi, B ;
Molnár, G ;
Maturana, A ;
Steger, K ;
Hegedûs, B ;
Demaurex, N ;
Krause, KH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (40) :37594-37601
[22]  
Barry-Lane PA, 2001, J CLIN INVEST, V108, P1513, DOI 10.1172/JCI200111927
[23]   Endothelial dysfunction in chronic myocardial infarction despite increased vascular endothelial nitric oxide synthase and soluble guanylate cyclase expression -: Role of enhanced vascular superoxide production [J].
Bauersachs, J ;
Bouloumié, A ;
Fraccarollo, D ;
Hu, K ;
Busse, R ;
Ertl, G .
CIRCULATION, 1999, 100 (03) :292-298
[24]   Expression of a functional neutrophil-type NADPH oxidase in cultured rat coronary microvascular endothelial cells [J].
Bayraktutan, U ;
Draper, N ;
Lang, D ;
Shah, AM .
CARDIOVASCULAR RESEARCH, 1998, 38 (01) :256-262
[25]   Molecular characterization and localization of the NAD(P)H oxidase components gp91-phox and p22-phox in endothelial cells [J].
Bayraktutan, U ;
Blayney, L ;
Shah, AM .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2000, 20 (08) :1903-1911
[26]   Generation of superoxide in cardiomyocytes during ischemia before reperfusion [J].
Becker, LB ;
Vanden Hoek, TL ;
Shao, ZH ;
Li, CQ ;
Schumacker, PT .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1999, 277 (06) :H2240-H2246
[27]   Pivotal role of NOX-2-containing NADPH oxidase in early ischemic preconditioning [J].
Bell, RM ;
Cave, AC ;
Johar, S ;
Hearse, DJ ;
Shah, AM ;
Shattock, MJ .
FASEB JOURNAL, 2005, 19 (12) :2037-+
[28]   The effect of natural antioxidants, NAO and apocynin, on oxidative stress in the rat heart following LPS challenge [J].
Ben-Shaul, V ;
Lomnitski, L ;
Nyska, A ;
Zurovsky, Y ;
Bergman, M ;
Grossman, S .
TOXICOLOGY LETTERS, 2001, 123 (01) :1-10
[29]   Pivotal role of a gp91phox-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice [J].
Bendall, JK ;
Cave, AC ;
Heymes, C ;
Gall, N ;
Shah, AM .
CIRCULATION, 2002, 105 (03) :293-296
[30]   Novel isoforms of NADPH oxidase in vascular physiology and pathophysiology [J].
Bengtsson, SH ;
Gulluyan, LM ;
Dusting, GJ ;
Drummond, GR .
CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2003, 30 (11) :849-854