Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp.

被引:48
作者
Lee, CC [1 ]
Smith, M [1 ]
Kibblewhite-Accinelli, R [1 ]
Williams, TG [1 ]
Wagschal, K [1 ]
Robertson, GH [1 ]
Wong, DWS [1 ]
机构
[1] USDA, ARS, Western Reg Res Ctr, Albany, CA 94710 USA
关键词
D O I
10.1007/s00284-005-4583-9
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Xylan is the major component of hemicellulose, and xylan should be fully utilized to improve the efficiencies of a biobased economy. There are a variety of industrial reaction conditions in which an active xylanase enzyme would be desired. As a result, xylanase enzymes with different activity profiles are of great interest. We isolated a xylanase gene (xyn10) from a Flavobacterium sp. whose sequence suggests that it is a glycosyl hydrolase family 10 member. The enzyme has a temperature optimum of 30 degrees C, is active at cold temperatures, and is thermolabile. The enzyme has an apparent K-m of 1.8 mg/ml and k(cat) of 100 sec(-1) for beechwood xylan, attacks highly branched native xylan substrates, and does not have activity against glucans.
引用
收藏
页码:112 / 116
页数:5
相关论文
共 28 条
[1]   A novel cold-tolerant Clostridium strain PXYL1 isolated from a psychrophilic cattle manure digester that secretes thermolabile xylanase and cellulase [J].
Akila, G ;
Chandra, TS .
FEMS MICROBIOLOGY LETTERS, 2003, 219 (01) :63-67
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]   The use of forced protein evolution to investigate and improve stability of family 10 xylanases -: The production of Ca2+-independent stable xylanases [J].
Andrews, SR ;
Taylor, EJ ;
Pell, G ;
Vincent, F ;
Ducros, VMA ;
Davies, GJ ;
Lakey, JH ;
Gilbert, HJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (52) :54369-54379
[4]   Microbial xylanolytic enzyme system: Properties and applications [J].
Bajpai, P .
ADVANCES IN APPLIED MICROBIOLOGY, VOL 43, 1997, 43 :141-194
[5]   COOPERATIVITY OF ESTERASES AND XYLANASES IN THE ENZYMATIC DEGRADATION OF ACETYL XYLAN [J].
BIELY, P ;
MACKENZIE, CR ;
PULS, J ;
SCHNEIDER, H .
BIO-TECHNOLOGY, 1986, 4 (08) :731-733
[6]   Endo-beta-1,4-xylanase families: differences in catalytic properties [J].
Biely, P ;
Vrsanska, M ;
Tenkanen, M ;
Kluepfel, D .
JOURNAL OF BIOTECHNOLOGY, 1997, 57 (1-3) :151-166
[7]  
BIELY P, 1991, ACS SYM SER, V460, P408
[8]   Xylanases, xylanase families and extremophilic xylanases [J].
Collins, T ;
Gerday, C ;
Feller, G .
FEMS MICROBIOLOGY REVIEWS, 2005, 29 (01) :3-23
[9]   A novel family 8 xylanase, functional and physicochemical characterization [J].
Collins, T ;
Meuwis, MA ;
Stals, I ;
Claeyssens, M ;
Feller, G ;
Gerday, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (38) :35133-35139
[10]   Comparison of the genomes of two Xanthomonas pathogens with differing host specificities [J].
A. C. R. da Silva ;
J. A. Ferro ;
F. C. Reinach ;
C. S. Farah ;
L. R. Furlan ;
R. B. Quaggio ;
C. B. Monteiro-Vitorello ;
M. A. Van Sluys ;
N. F. Almeida ;
L. M. C. Alves ;
A. M. do Amaral ;
M. C. Bertolini ;
L. E. A. Camargo ;
G. Camarotte ;
F. Cannavan ;
J. Cardozo ;
F. Chambergo ;
L. P. Ciapina ;
R. M. B. Cicarelli ;
L. L. Coutinho ;
J. R. Cursino-Santos ;
H. El-Dorry ;
J. B. Faria ;
A. J. S. Ferreira ;
R. C. C. Ferreira ;
M. I. T. Ferro ;
E. F. Formighieri ;
M. C. Franco ;
C. C. Greggio ;
A. Gruber ;
A. M. Katsuyama ;
L. T. Kishi ;
R. P. Leite ;
E. G. M. Lemos ;
M. V. F. Lemos ;
E. C. Locali ;
M. A. Machado ;
A. M. B. N. Madeira ;
N. M. Martinez-Rossi ;
E. C. Martins ;
J. Meidanis ;
C. F. M. Menck ;
C. Y. Miyaki ;
D. H. Moon ;
L. M. Moreira ;
M. T. M. Novo ;
V. K. Okura ;
M. C. Oliveira ;
V. R. Oliveira ;
H. A. Pereira .
Nature, 2002, 417 (6887) :459-463