Colloidal CIGS and CZTS nanocrystals: A precursor route to printed photovoltaics

被引:119
作者
Akhavan, Vahid A.
Goodfellow, Brian W.
Panthani, Matthew G.
Steinhagen, Chet
Harvey, Taylor B.
Stolle, C. Jackson
Korgel, Brian A. [1 ]
机构
[1] Univ Texas Austin, Dept Chem Engn, Texas Mat Inst, Austin, TX 78712 USA
关键词
Nanocrystals; Photovoltaics; Energy; Sustainability; Printed electronics; SOLAR-CELLS; CUINSE2; NANOCRYSTAL; BAND-GAP; SULFIDE; EFFICIENT; INKS; DEPOSITION; LAYER; FILMS;
D O I
10.1016/j.jssc.2011.11.002
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
This review article summarizes our research focused on Cu(In1-xGax)Se-2 (CIGS) nanocrystals, including their synthesis and implementation as the active light absorbing material in photovoltaic devices (PVs). CIGS PV layers are typically made using a high temperature ( >450 degrees C) process in which Cu, In and Ga are sequentially or co-evaporated and selenized. We have sought to use CIGS nanocrystals synthesized with the desired stoichiometry to deposit PV device layers without high temperature processing. This approach, using spray deposition of the CIGS light absorber layers, without high temperature selenization, has enabled up to 3.1% power conversion efficiency under AM 1.5 solar illumination. Although the device efficiency is too low for commercialization, these devices provide a proof-of-concept that solution-deposited CIGS nanocrystal films can function in PV devices, enabling unconventional device architectures and materials combinations, including the use of flexible, inexpensive and light-weight plastic substrates. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2 / 12
页数:11
相关论文
共 61 条
[1]   Spray-deposited CuInSe2 nanocrystal photovoltaics [J].
Akhavan, Vahid A. ;
Goodfellow, Brian W. ;
Panthani, Matthew G. ;
Reid, Dariya K. ;
Hellebusch, Danny J. ;
Adachi, Takuji ;
Korgel, Brian A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (10) :1600-1606
[2]   Thickness-limited performance of CuInSe2 nanocrystal photovoltaic devices [J].
Akhavan, Vahid A. ;
Panthani, Matthew G. ;
Goodfellow, Brian W. ;
Reid, Dariya K. ;
Korgel, Brian A. .
OPTICS EXPRESS, 2010, 18 (19) :A411-A420
[3]   Optical functions of chalcopyrite CuGaxIn1-xSe2 alloys [J].
Alonso, MI ;
Garriga, M ;
Rincón, CAD ;
Hernández, E ;
León, M .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2002, 74 (05) :659-664
[4]  
[Anonymous], SOL MARK RES AN SOL
[5]  
[Anonymous], MOD ENERGY REV
[6]  
[Anonymous], J VACUUM SCI TECHN A
[7]  
[Anonymous], EN INF ADM EL POW MO
[8]   Nanocrystalline chalcopyrite materials (CuInS2 and CuInSe2) via low-temperature pyrolysis of molecular single-source precursors [J].
Castro, SL ;
Bailey, SG ;
Raffaelle, RP ;
Banger, KK ;
Hepp, AF .
CHEMISTRY OF MATERIALS, 2003, 15 (16) :3142-3147
[9]   PbSe Nanocrystal Excitonic Solar Cells [J].
Choi, Joshua J. ;
Lim, Yee-Fun ;
Santiago-Berrios, Mitk'El B. ;
Oh, Matthew ;
Hyun, Byung-Ryool ;
Sung, Liangfeng ;
Bartnik, Adam C. ;
Goedhart, Augusta ;
Malliaras, George G. ;
Abruna, Hector D. ;
Wise, Frank W. ;
Hanrath, Tobias .
NANO LETTERS, 2009, 9 (11) :3749-3755
[10]   Earth Abundant Element Cu2Zn(Sn1-xGex)S4 Nanocrystals for Tunable Band Gap Solar Cells: 6.8% Efficient Device Fabrication [J].
Ford, Grayson M. ;
Guo, Qijie ;
Agrawal, Rakesh ;
Hillhouse, Hugh W. .
CHEMISTRY OF MATERIALS, 2011, 23 (10) :2626-2629