Regulation of phosphate homeostasis by microRNA in Arabidopsis

被引:650
作者
Chiou, TJ [1 ]
Aung, K
Lin, SI
Wu, CC
Chiang, SF
Su, CL
机构
[1] Acad Sinica, Inst Bioagr Sci, Taipei 115, Taiwan
[2] Acad Sinica, Taiwan Int Grad Program, Mol & Biol Agr Sci Program, Taipei 115, Taiwan
[3] Natl Def Med Ctr, Grad Inst Life Sci, Taipei 114, Taiwan
关键词
D O I
10.1105/tpc.105.038943
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this study, we reveal a mechanism by which plants regulate inorganic phosphate ( Pi) homeostasis to adapt to environmental changes in Pi availability. This mechanism involves the suppression of a ubiquitin-conjugating E2 enzyme by a specific microRNA, miR399. Upon Pi starvation, the miR399 is upregulated and its target gene, a ubiquitin-conjugating E2 enzyme, is downregulated in Arabidopsis thaliana. Accumulation of the E2 transcript is suppressed in transgenic Arabidopsis overexpressing miR399. Transgenic plants accumulated five to six times the normal Pi level in shoots and displayed Pi toxicity symptoms that were phenocopied by a loss-of-function E2 mutant. Pi toxicity was caused by increased Pi uptake and by translocation of Pi from roots to shoots and retention of Pi in the shoots. Moreover, unlike wild-type plants, in which Pi in old leaves was readily retranslocated to other developing young tissues, remobilization of Pi in miR399-overexpressing plants was impaired. These results provide evidence that miRNA controls Pi homeostasis by regulating the expression of a component of the proteolysis machinery in plants.
引用
收藏
页码:412 / 421
页数:10
相关论文
共 58 条
[1]   Computational prediction of miRNAs in Arabidopsis thaliana [J].
Adai, A ;
Johnson, C ;
Mlotshwa, S ;
Archer-Evans, S ;
Manocha, V ;
Vance, V ;
Sundaresan, V .
GENOME RESEARCH, 2005, 15 (01) :78-91
[2]  
Allen E, 2005, CELL, V121, P207, DOI 10.1016/j.cell.2005.04.004
[3]  
Ames B. N., 1966, METHOD ENZYMOL, V8, P115, DOI DOI 10.1016/0076-6879(66)08014-5
[4]   Antiquity of microRNAs and their targets in land plants [J].
Axtell, MJ ;
Bartel, DP .
PLANT CELL, 2005, 17 (06) :1658-1673
[5]   Ubiquitylation in plants: a post-genomic look at a post-translational modification [J].
Bachmair, A ;
Novatchkova, M ;
Potuschak, T ;
Eisenhaber, F .
TRENDS IN PLANT SCIENCE, 2001, 6 (10) :463-470
[6]   MicroRNAs: At the root of plant development? [J].
Bartel, B ;
Bartel, DP .
PLANT PHYSIOLOGY, 2003, 132 (02) :709-717
[7]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[8]  
Bieleski R. L., 1983, Inorganic plant nutrition, P422
[9]   The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots [J].
Burleigh, SH ;
Harrison, MJ .
PLANT PHYSIOLOGY, 1999, 119 (01) :241-248
[10]   Role of microRNAs in plant and animal development [J].
Carrington, JC ;
Ambros, V .
SCIENCE, 2003, 301 (5631) :336-338