On parameter estimation using level sets

被引:15
作者
Berg, JM [1 ]
Holmström, K
机构
[1] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA
[2] Malardalen Univ, Dept Math & Phys, Ctr Math Modeling, S-72123 Vasteras, Sweden
关键词
curve evolution; parameter estimation; level set methods; process modeling; semiconductor manufacturing;
D O I
10.1137/S0363012998336340
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Consider the problem of selecting the member of a parametrized family of curves that best matches a given curve. This is a key step in determining proper values for adjustable parameters in low-order plasma etching and deposition models. Level set methods offer several attractive features for treating such problems. This paper presents a parameter estimation scheme that exploits the level set formulation. The method is completely geometric; there is no need to introduce an arbitrary coordinate system for the curves. Analytic results necessary for the application of gradient descent algorithms are derived, and some preliminary numerical results are presented.
引用
收藏
页码:1372 / 1393
页数:22
相关论文
共 21 条
[1]   A LEVEL SET APPROACH TO A UNIFIED MODEL FOR ETCHING, DEPOSITION, AND LITHOGRAPHY .1. ALGORITHMS AND 2-DIMENSIONAL SIMULATIONS [J].
ADALSTEINSSON, D ;
SETHIAN, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 120 (01) :128-144
[2]   Curve evolution models for real-time identification with application to plasma etching [J].
Berg, J ;
Yezzi, A ;
Tannenbaum, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (01) :99-102
[3]  
Berg J, 1996, IEEE DECIS CONTR P, P3376, DOI 10.1109/CDC.1996.573677
[4]  
Berg JM, 1997, IEEE DECIS CONTR P, P860, DOI 10.1109/CDC.1997.650750
[5]  
BERG JM, 1997, 1454 U MINN I MATH I
[6]   A PDE sensitivity equation method for optimal aerodynamic design [J].
Borggaard, J ;
Burns, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 136 (02) :366-384
[7]  
BORGGAARD J, 1995, FLOW CONTROL
[8]  
CALE TS, 1992, P MAT RES SOC S, V260, P393
[9]  
do Carmo M., 2016, Differential Geometry of Curves and Surfaces, Vsecond
[10]  
Fletcher R., 1981, PRACTICAL METHODS OP