Engineered disulfide bonds in staphylococcal nuclease: Effects on the stability and conformation of the folded protein

被引:38
作者
Hinck, AP [1 ]
Truckses, DM [1 ]
Markley, JL [1 ]
机构
[1] UNIV WISCONSIN,DEPT BIOCHEM,MADISON,WI 53706
关键词
D O I
10.1021/bi960309o
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Efforts to enhance the stability of proteins by introducing engineered disulfide bonds have resulted in mixed success. Most approaches to the prediction of the energetic consequences of disulfide bond formation in proteins have considered only the destabilizing effects of cross-links on the unfolded state (chain entropy model) [Pace, C. N., Grimsley, G. R., Thomson, J. A., & Barnett, B. J. (19S8) J. Biol. Chem. 263, 11820-11825; Doig, A. J., & Williams, D. H. (1991) J. Mol. Biol. 217, 389-398]. It seems clear, however, that disulfide bridges also can influence tile stability of the native state. In order to assess the importance of the latter effect, we have studied four variants of staphylococcal nuclease (VS strain) each containing one potential disulfide bridge created by changing two wild-type residues to cysteines by site-directed mutagenesis. In each case, one of the introduced cysteines was within the type VIa beta turn containing cis Pro(117), and the other was located in the adjacent extended loop containing Gly(79) In all four cases, the overall loop size was kept nearly constant (the number of residues in the loop between the two cysteines varied from 37 to 42) so as to minimize differences from chain entropy effects. The objective was to create variants in which a change in the reduction state of tile disulfide would be coupled to a change in the position of the equilibrium between file cis and trans forms of the Xxx(116)-Pro(117) peptide bond in the folded slate of the protein. The position of this equilibrium, which can be detected by NMR spectroscopy, has been shown previously to correlate with the stability of the native protein. Its determination provides a measure of strain in the folded state. The thermal stabilities and free energies for unfolding by elevated temperature and guanidinium chloride were measured for each of the four mutants under conditions in which the Introduced cysteines were cross-linked (oxidized) and unlinked (reduced). In addition: reduction potentials were determined for each mutant. Formation of the different disulfide bridges was found to induce varying levels of folded state strain. The stabilization energy of a given disulfide bridge could be predicted from the measured perturbation energy for the peptide bond isomerization, provided that energetic effects on the unfolded state were calculated according to the chain entropy model. Undiagnosed strain in native slates of proteins may explain the variability observed in the stabilization provided by engineered disulfide bridges.
引用
收藏
页码:10328 / 10338
页数:11
相关论文
共 61 条
[21]   CONTRIBUTIONS OF THE POLAR, UNCHARGED AMINO-ACIDS TO THE STABILITY OF STAPHYLOCOCCAL NUCLEASE - EVIDENCE FOR MUTATIONAL EFFECTS ON THE FREE-ENERGY OF THE DENATURED STATE [J].
GREEN, SM ;
MEEKER, AK ;
SHORTLE, D .
BIOCHEMISTRY, 1992, 31 (25) :5717-5728
[22]   STAPHYLOCOCCAL NUCLEASE ACTIVE-SITE AMINO-ACIDS - PH-DEPENDENCE OF TYROSINES AND ARGININES BY C-13 NMR AND CORRELATION WITH KINETIC-STUDIES [J].
GRISSOM, CB ;
MARKLEY, JL .
BIOCHEMISTRY, 1989, 28 (05) :2116-2124
[23]  
HINCK AP, 1990, J AM CHEM SOC, V112, P9031, DOI 10.1021/ja00181a001
[24]   NMR STRATEGY FOR DETERMINING XAA-PRO PEPTIDE-BOND CONFIGURATIONS IN PROTEINS - MUTANTS OF STAPHYLOCOCCAL NUCLEASE WITH ALTERED CONFIGURATION AT PROLINE-117 [J].
HINCK, AP ;
EBERHARDT, ES ;
MARKLEY, JL .
BIOCHEMISTRY, 1993, 32 (44) :11810-11818
[25]  
HINCK AP, 1993, THESIS U WISCONSIN M
[26]  
HODEL A, 1994, PROTEIN SCI, V3, P549
[27]   STRESS AND STRAIN IN STAPHYLOCOCCAL NUCLEASE [J].
HODEL, A ;
KAUTZ, RA ;
JACOBS, MD ;
FOX, RO .
PROTEIN SCIENCE, 1993, 2 (05) :838-850
[28]  
HODEL AC, 1995, PROTEIN SCI, V4, P484
[29]   THE CRYSTAL-STRUCTURE OF STAPHYLOCOCCAL NUCLEASE REFINED AT 1.7 A RESOLUTION [J].
HYNES, TR ;
FOX, RO .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1991, 10 (02) :92-105
[30]  
JOCELYN PC, 1987, METHOD ENZYMOL, V143, P43