Morphology and thermal properties of electrospun fatty acids/polyethylene terephthalate composite fibers as novel form-stable phase change materials

被引:133
作者
Chen, Changzhong [1 ,2 ]
Wang, Linge [1 ,3 ]
Huang, Yong [1 ,4 ]
机构
[1] Chinese Acad Sci, Guangzhou Inst Chem, Key Lab Cellulose & Lignocellulos, Guangzhou 510650, Guangdong, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
[3] Univ Sheffield, Dept Chem, Sheffield S3 7HF, S Yorkshire, England
[4] Chinese Acad Sci, Inst Chem, State Key Lab Polymer Phys & Chem, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
electrospinning; form-stable PCM; fibers; fatty acids; thermal properties;
D O I
10.1016/j.solmat.2008.05.013
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The ultrafine fibers based on the composites of polyethylene terephthalate (PET) and a series of fatty acids, lauric acid (LA), myristic acid (MA), palmitic acid (PA), and stearic acid (SA), were prepared successfully via electrospinning as form-stable phase change materials (PCMs). The morphology and thermal properties of the composite fibers were studied by field emission scanning electron microscopy (FE-SEM) and differential scanning calorimetry (DSC), respectively. It was found that the average fiber diameter increased generally with the content of fatty acid (LA) in the LA/PET composite fibers. The fibers with the low mass ratio maintained cylindrical shape with smooth surface while the quality became worse when the mass ratio is too high (more than 100/100). Moreover, the latent heat of the composite fibers increased with the increase of LA content and the phase transition temperature of the fibers have no obvious variations compared with LA. In contrast, both the latent heat and phase transition temperature of the fatty acid/PET composite fibers varied with the type of the fatty acids, and could be well maintained after 100 heating-cooling thermal cycles, which demonstrated that the composite fibers had good thermal stability and reliability. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1382 / 1387
页数:6
相关论文
共 33 条
[1]   LOW-TEMPERATURE LATENT-HEAT THERMAL-ENERGY STORAGE - HEAT-STORAGE MATERIALS [J].
ABHAT, A .
SOLAR ENERGY, 1983, 30 (04) :313-332
[2]   Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage [J].
Alkan, Cemil ;
Sari, Ahmet .
SOLAR ENERGY, 2008, 82 (02) :118-124
[3]   Poly(ethylene glycol)/acrylic polymer blends for latent heat thermal energy storage [J].
Alkan, Cemil ;
Sari, Ahmet ;
Uzun, Orhan .
AICHE JOURNAL, 2006, 52 (09) :3310-3314
[4]   Electrospinning of thermo-regulating ultrafine fibers based on polyethylene glycol/cellulose acetate composite [J].
Chen, Changzhong ;
Wang, Linge ;
Huang, Yong .
POLYMER, 2007, 48 (18) :5202-5207
[5]   A review on phase change energy storage: materials and applications [J].
Farid, MM ;
Khudhair, AM ;
Razack, SAK ;
Al-Hallaj, S .
ENERGY CONVERSION AND MANAGEMENT, 2004, 45 (9-10) :1597-1615
[6]   Preparation of polyethylene-paraffin compound as a form-stable solid-liquid phase change material [J].
Hong, Y ;
Ge, XS .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2000, 64 (01) :37-44
[7]   A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J].
Huang, ZM ;
Zhang, YZ ;
Kotaki, M ;
Ramakrishna, S .
COMPOSITES SCIENCE AND TECHNOLOGY, 2003, 63 (15) :2223-2253
[8]   Solar energy storage using phase change materials [J].
Kenisarin, Murat ;
Mahkamov, Khamid .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2007, 11 (09) :1913-1965
[9]   Energy storage applications in greenhouses by means of phase change materials (PCMs): a review [J].
Kurklu, A .
RENEWABLE ENERGY, 1998, 13 (01) :89-103
[10]   Electrospinning of nanofibers: Reinventing the wheel? [J].
Li, D ;
Xia, YN .
ADVANCED MATERIALS, 2004, 16 (14) :1151-1170