In this paper, constitutive relations are solved in the Fourier domain using a finite-element-based commercial software. The dynamic responses of viscoelastic bars or plates to either thermal or mechanical loads are predicted by considering complex moduli (Young, Poisson, stiffness moduli) as input data. These moduli are measured in the same frequency domain as that which is chosen for modeling the wave propagation. This approach is simpler since it suppresses the necessity of establishing a theological model. Specific output processing then allows the numerical predictions to be compared to analytical solutions, in the absence of scatterers. The performances of this technique and its potential for simulating more complicated problems like diffraction of waves or for solving inverse problems are finally discussed. (C) 2004 Acoustical Society of America.