How to share a quantum secret

被引:1123
作者
Cleve, R [1 ]
Gottesman, D
Lo, HK
机构
[1] Univ Calgary, Dept Comp Sci, Calgary, AB T2N 1N4, Canada
[2] Los Alamos Natl Lab, Grp T6, Los Alamos, NM 87545 USA
[3] Hewlett Packard Labs, Bristol BS34 8QZ, Avon, England
关键词
D O I
10.1103/PhysRevLett.83.648
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the concept of quantum secret sharing. In a (k, ta) threshold scheme, a secret quantum state is divided into n shares such that any k of those shares can be used to reconstruct the secret, but any set of k - 1 or fewer shares contains absolutely no information about the secret. We show that the only constraint on the existence of threshold schemes comes from the quantum "no-cloning theorem," which requires that n < 2k, and we give efficient constructions of all threshold schemes. We also show that, for k less than or equal to n < 2k - 1, then any (k, n) threshold scheme must distribute information that is globally in a mixed state.
引用
收藏
页码:648 / 651
页数:4
相关论文
共 24 条
[1]  
Aharonov D., 1998, P 29 ANN ACM S THEOR, P176
[2]  
AIGNER M, 1998, PROOFS BOOK, P7
[3]  
[Anonymous], SIGACT NEWS
[4]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[5]   QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM [J].
BENNETT, CH ;
BRASSARD, G ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :557-559
[6]  
Blakeley G. R., 1979, P NAT COMP C, P313, DOI [10.1109/MARK.1979.8817296, DOI 10.1109/MARK.1979.8817296]
[7]   Good quantum error-correcting codes exist [J].
Calderbank, AR ;
Shor, PW .
PHYSICAL REVIEW A, 1996, 54 (02) :1098-1105
[8]   Quantum-error correction and orthogonal geometry [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
PHYSICAL REVIEW LETTERS, 1997, 78 (03) :405-408
[9]   COMMUNICATION BY ELECTRON-PARAMAGNETIC-RES DEVICES [J].
DIEKS, D .
PHYSICS LETTERS A, 1982, 92 (06) :271-272
[10]   Class of quantum error-correcting codes saturating the quantum Hamming hound [J].
Gottesman, D .
PHYSICAL REVIEW A, 1996, 54 (03) :1862-1868