Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient

被引:206
作者
Artale, V
Boffetta, G
Celani, A
Cencini, M
Vulpiani, A
机构
[1] UNIV TURIN, DIPARTIMENTO FIS GEN, I-10125 TURIN, ITALY
[2] IST NAZL FIS MAT, I-10125 TURIN, ITALY
[3] POLITECN TORINO, DIPARTIMENTO INGN AREONAUT & SPAZIALE, I-10129 TURIN, ITALY
[4] IST NAZL FIS MAT, I-10129 TURIN, ITALY
[5] UNIV ROMA LA SAPIENZA, DIPARTIMENTO FIS, I-00185 ROME, ITALY
[6] IST NAZL FIS MAT, I-00185 ROME, ITALY
关键词
D O I
10.1063/1.869433
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We investigate the spreading of passive tracers in closed basins. If the characteristic length scale of the Eulerian velocities is not very small compared with the size of the basin the usual diffusion coefficient does not give any relevant information about the mechanism of spreading. We introduce a finite size characteristic time tau(delta) which describes the diffusive process at scale delta, When delta is small compared with the typical length of the velocity field one has tau(delta)similar to lambda(-1), where lambda is the maximum Lyapunov exponent of the Lagrangian motion, At large delta the behavior of tau(delta) depends on the details of the system, in particular the presence of boundaries, and in this limit we have found a universal behavior for a large class of system under rather general hypothesis, The method of working at fixed scale delta makes more physical sense than the traditional way of looking at the relative diffusion at fixed delay limes, This technique is displayed in a series of numerical experiments in simple flows. (C) 1997 American Institute of Physics.
引用
收藏
页码:3162 / 3171
页数:10
相关论文
共 28 条
  • [2] Predictability in the large: An extension of the concept of Lyapunov exponent
    Aurell, E
    Boffetta, G
    Crisanti, A
    Paladin, G
    Vulpiani, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (01): : 1 - 26
  • [3] Growth of noninfinitesimal perturbations in turbulence
    Aurell, E
    Boffetta, G
    Crisanti, A
    Paladin, G
    Vulpiani, A
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (07) : 1262 - 1265
  • [4] BECK C, 1993, TERMODYNAMICS CHAOTI
  • [5] Benettin G., 1980, MECCANICA, V15, P9, DOI DOI 10.1007/BF02128236
  • [6] EXIT TIMES AND CHAOTIC TRANSPORT IN HAMILTONIAN-SYSTEMS
    BENKADDA, S
    ELSKENS, Y
    RAGOT, B
    MENDONCA, JT
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (18) : 2859 - 2862
  • [7] ON THE MULTIFRACTAL NATURE OF FULLY-DEVELOPED TURBULENCE AND CHAOTIC SYSTEMS
    BENZI, R
    PALADIN, G
    PARISI, G
    VULPIANI, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18): : 3521 - 3531
  • [8] EDDY DIFFUSIVITIES IN SCALAR TRANSPORT
    BIFERALE, L
    CRISANTI, A
    VERGASSOLA, M
    VULPIANI, A
    [J]. PHYSICS OF FLUIDS, 1995, 7 (11) : 2725 - 2734
  • [9] ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS
    BOUCHAUD, JP
    GEORGES, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5): : 127 - 293
  • [10] BUFFONI G, IN PRESS J GEOPHYS R