Predictability in the large: An extension of the concept of Lyapunov exponent

被引:284
作者
Aurell, E
Boffetta, G
Crisanti, A
Paladin, G
Vulpiani, A
机构
[1] UNIV TURIN, DIPARTIMENTO FIS GEN, IST NAZL FIS MAT, UNITA TORINO, I-10125 TURIN, ITALY
[2] UNIV ROMA LA SAPIENZA, DIPARTIMENTO FIS, IST NAZL FIS MAT, UNITA ROMA, I-00185 ROME, ITALY
[3] UNIV AQUILA, DIPARTIMENTO FIS, IST NAZL FIS MAT, UNITE AQUILA, I-67100 LAQUILA, ITALY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 01期
关键词
D O I
10.1088/0305-4470/30/1/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the predictability problem in dynamical systems with many degrees of freedom and a wide spectrum of temporal scales. In particular, we study the case of three-dimensional turbulence at high Reynolds numbers by introducing a finite-size Lyapunov exponent which measures the growth rate of finite-size perturbations. For sufficiently small perturbations this quantity coincides with the usual Lyapunov exponent. When the perturbation is still small compared to large-scale fluctuations, but large compared to fluctuations at the smallest dynamically active scales, the finite-size Lyapunov exponent is inversely proportional to the square of the perturbation size. Our results are supported by numerical experiments on shell models. We find that intermittency corrections do not change the scaling law of predictability. We also discuss the relation between the finite-size Lyapunov exponent and information entropy.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 54 条
  • [1] ARNOLD VI, 1983, GRUND MATH WISS, P250
  • [2] Predictability in systems with many characteristic times: The case of turbulence
    Aurell, E
    Boffetta, G
    Crisanti, A
    Paladin, G
    Vulpiani, A
    [J]. PHYSICAL REVIEW E, 1996, 53 (03): : 2337 - 2349
  • [3] STATISTICAL-MECHANICS OF SHELL MODELS FOR 2-DIMENSIONAL TURBULENCE
    AURELL, E
    BOFFETTA, G
    CRISANTI, A
    FRICK, P
    PALADIN, G
    VULPIANI, A
    [J]. PHYSICAL REVIEW E, 1994, 50 (06) : 4705 - 4715
  • [4] Growth of noninfinitesimal perturbations in turbulence
    Aurell, E
    Boffetta, G
    Crisanti, A
    Paladin, G
    Vulpiani, A
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (07) : 1262 - 1265
  • [5] Benettin G., 1980, MECCANICA, V15, P9, DOI DOI 10.1007/BF02128236
  • [6] ON THE MULTIFRACTAL NATURE OF FULLY-DEVELOPED TURBULENCE AND CHAOTIC SYSTEMS
    BENZI, R
    PALADIN, G
    PARISI, G
    VULPIANI, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18): : 3521 - 3531
  • [7] Helical shell models for three-dimensional turbulence
    Benzi, R
    Biferale, L
    Kerr, RM
    Trovatore, E
    [J]. PHYSICAL REVIEW E, 1996, 53 (04): : 3541 - 3550
  • [8] TRANSITION TO CHAOS IN A SHELL-MODEL OF TURBULENCE
    BIFERALE, L
    LAMBERT, A
    LIMA, R
    PALADIN, G
    [J]. PHYSICA D, 1995, 80 (1-2): : 105 - 119
  • [9] Role of inviscid invariants in shell models of turbulence
    Biferale, L
    Kerr, RM
    [J]. PHYSICAL REVIEW E, 1995, 52 (06): : 6113 - 6122
  • [10] BOFFETTA G, IN PRESS PHYS FLUI D