Microwave hydrothermal synthesis of high performance tin-graphene nanocomposites for lithium ion batteries

被引:81
作者
Chen, Shuangqiang [1 ,2 ]
Wang, Yong [1 ]
Ahn, Hyojun [3 ]
Wang, Guoxiu [2 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] Univ Technol Sydney, Sch Chem & Forens Sci, Ctr Clean Energy Technol, Sydney, NSW 2007, Australia
[3] Gyeongsang Natl Univ, Sch Mat Sci & Engn, Jinju 660701, Gyeongnam, South Korea
基金
中国国家自然科学基金; 新加坡国家研究基金会; 澳大利亚研究理事会;
关键词
Graphene nanosheets; Tin nanoparticles; Microwave hydrothermal synthesis; Hydrogen reduction; Lithium ion batteries; SN-C COMPOSITE; ANODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; HIGH-CAPACITY; SNO2/GRAPHENE COMPOSITE; STORAGE; OXIDE; MICROSPHERES; ELECTRODES; STABILITY;
D O I
10.1016/j.jpowsour.2012.05.051
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tin-graphene nanocomposites are prepared by a combination of microwave hydrothermal synthesis and a one-step hydrogen gas reduction. Altering the weight ratio between tin and graphene nanosheets has critical influences on their morphologies and electrochemical performances. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) analysis confirm the homogeneous distribution of tin nanoparticles on the surface of graphene nanosheets. When applied as an anode material in lithium ion batteries, tin-graphene nanocomposite exhibits a high lithium storage capacity of 1407 mAh g(-1). The as-prepared tin-graphene nanocomposite also demonstrates an excellent high rate capacity and a stable cycle performance. The superior electrochemical performance could be attributed to the synergistic effect of the three-dimensional nanoarchitecture, in which tin nanoparticles are sandwiched between highly conductive and flexible graphene nanosheets. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:22 / 27
页数:6
相关论文
共 49 条
[1]   Giant Nonlocality Near the Dirac Point in Graphene [J].
Abanin, D. A. ;
Morozov, S. V. ;
Ponomarenko, L. A. ;
Gorbachev, R. V. ;
Mayorov, A. S. ;
Katsnelson, M. I. ;
Watanabe, K. ;
Taniguchi, T. ;
Novoselov, K. S. ;
Levitov, L. S. ;
Geim, A. K. .
SCIENCE, 2011, 332 (6027) :328-330
[2]   Graphene integer quantum Hall effect in the ferromagnetic and paramagnetic regimes [J].
Alicea, Jason ;
Fisher, Matthew P. A. .
PHYSICAL REVIEW B, 2006, 74 (07)
[3]   Preparation and characterization of core-shell battery materials for Li-ion batteries manufactured by substrate induced coagulation [J].
Basch, Angelika ;
Albering, Joerg H. .
JOURNAL OF POWER SOURCES, 2011, 196 (06) :3290-3295
[4]   Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries [J].
Chen, Shuang Qiang ;
Wang, Yong .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (43) :9735-9739
[5]   Graphene supported Sn-Sb@carbon core-shell particles as a superior anode for lithium ion batteries [J].
Chen, Shuangqiang ;
Chen, Peng ;
Wu, Minghong ;
Pan, Dengyu ;
Wang, Yong .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (10) :1302-1306
[6]   Facile synthesis and stable lithium storage performances of Sn- sandwiched nanoparticles as a high capacity anode material for rechargeable Li batteries [J].
Chen, Zhongxue ;
Cao, Yuliang ;
Qian, Jiangfeng ;
Ai, Xinping ;
Yang, Hanxi .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (34) :7266-7271
[7]   A facile method to improve the high rate capability of Co3O4 nanowire array electrodes [J].
Cheng, Hua ;
Lu, Zhou Guang ;
Deng, Jian Qiu ;
Chung, C. Y. ;
Zhang, Kaili ;
Li, Yang Yang .
NANO RESEARCH, 2010, 3 (12) :895-901
[8]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495
[9]   Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries [J].
Derrien, Gaelle ;
Hassoun, Jusef ;
Panero, Stefania ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2007, 19 (17) :2336-+
[10]   Cobalt oxide thin film prepared by an electrochemical route for Li-ion battery [J].
Do, Jing-Shan ;
Dai, Rui-Feng .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :204-210