Giant Nonlocality Near the Dirac Point in Graphene

被引:218
作者
Abanin, D. A. [2 ,3 ,4 ]
Morozov, S. V. [2 ,7 ]
Ponomarenko, L. A. [2 ]
Gorbachev, R. V. [2 ]
Mayorov, A. S. [2 ]
Katsnelson, M. I. [5 ]
Watanabe, K. [6 ]
Taniguchi, T. [6 ]
Novoselov, K. S. [2 ]
Levitov, L. S. [1 ]
Geim, A. K. [2 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Univ Manchester, Manchester Ctr Mesosci & Nanotechnol, Manchester M13 9PL, Lancs, England
[3] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[4] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[5] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[6] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050044, Japan
[7] Russian Acad Sci, Inst Microelect Technol, Chernogolovka 142432, Russia
基金
英国工程与自然科学研究理事会;
关键词
TRANSPORT;
D O I
10.1126/science.1199595
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transport measurements have been a powerful tool for discovering electronic phenomena in graphene. We report nonlocal measurements performed in the Hall bar geometry with voltage probes far away from the classical path of charge flow. We observed a large nonlocal response near the Dirac point in fields as low as 0.1 tesla, which persisted up to room temperature. The nonlocality is consistent with the long-range flavor currents induced by the lifting of spin/valley degeneracy. The effect is expected to contribute strongly to all magnetotransport phenomena near the neutrality point.
引用
收藏
页码:328 / 330
页数:3
相关论文
共 22 条
[1]   Dissipative quantum Hall effect in graphene near the Dirac point [J].
Abanin, Dmitry A. ;
Novoselov, Kostya S. ;
Zeitler, Uli ;
Lee, Patrick A. ;
Geim, A. K. ;
Levitov, L. S. .
PHYSICAL REVIEW LETTERS, 2007, 98 (19)
[2]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[3]   Divergent resistance at the Dirac point in graphene: Evidence for a transition in a high magnetic field [J].
Checkelsky, Joseph G. ;
Li, Lu ;
Ong, N. P. .
PHYSICAL REVIEW B, 2009, 79 (11)
[4]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[5]   Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene [J].
Du, Xu ;
Skachko, Ivan ;
Duerr, Fabian ;
Luican, Adina ;
Andrei, Eva Y. .
NATURE, 2009, 462 (7270) :192-195
[6]   Broken-symmetry states and divergent resistance in suspended bilayer graphene [J].
Feldman, Benjamin E. ;
Martin, Jens ;
Yacoby, Amir .
NATURE PHYSICS, 2009, 5 (12) :889-893
[7]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[8]   Hunting for Monolayer Boron Nitride: Optical and Raman Signatures [J].
Gorbachev, Roman V. ;
Riaz, Ibtsam ;
Nair, Rahul R. ;
Jalil, Rashid ;
Britnell, Liam ;
Belle, Branson D. ;
Hill, Ernie W. ;
Novoselov, Kostya S. ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Geim, Andre K. ;
Blake, Peter .
SMALL, 2011, 7 (04) :465-468
[9]   EDGE-STATE TRANSPORT AND ITS EXPERIMENTAL CONSEQUENCES IN HIGH MAGNETIC-FIELDS [J].
HAUG, RJ .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1993, 8 (02) :131-153
[10]   Bipolar supercurrent in graphene [J].
Heersche, Hubert B. ;
Jarillo-Herrero, Pablo ;
Oostinga, Jeroen B. ;
Vandersypen, Lieven M. K. ;
Morpurgo, Alberto F. .
NATURE, 2007, 446 (7131) :56-59