Dissecting the architecture of a quantitative trait locus in yeast

被引:404
作者
Steinmetz, LM
Sinha, H
Richards, DR
Spiegelman, JI
Oefner, PJ
McCusker, JH [1 ]
Davis, RW
机构
[1] Duke Univ, Med Ctr, Dept Microbiol, Durham, NC 27710 USA
[2] Stanford Genome Technol Ctr, Palo Alto, CA 94304 USA
[3] Stanford Univ, Sch Med, Dept Genet, Stanford, CA 94305 USA
[4] Stanford Univ, Sch Med, Dept Biochem, Stanford, CA 94305 USA
关键词
D O I
10.1038/416326a
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most phenotypic diversity in natural populations is characterized by differences in degree rather than in kind. Identification of the actual genes underlying these quantitative traits has proved difficult(1-5). As a result, little is known about their genetic architecture. The failures are thought to be due to the different contributions of many underlying genes to the phenotype and the ability of different combinations of genes and environmental factors to produce similar phenotypes(6,7). This study combined genome-wide mapping and a new genetic technique named reciprocal-hemizygosity analysis to achieve the complete dissection of a quantitative trait locus (QTL) in Saccharomyces cerevisiae. A QTL architecture was uncovered that was more complex than expected. Functional linkages both in cis and in trans were found between three tightly linked quantitative trait genes that are neither necessary nor sufficient in isolation. This arrangement of alleles explains heterosis (hybrid vigour), the increased fitness of the heterozygote compared with homozygotes. It also demonstrates a deficiency in current approaches to QTL dissection with implications extending to traits in other organisms, including human genetic diseases.
引用
收藏
页码:326 / 330
页数:5
相关论文
共 29 条