Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy

被引:729
作者
Lee, Yi [1 ]
El Andaloussi, Samir [1 ,2 ]
Wood, Matthew J. A. [1 ]
机构
[1] Univ Oxford, Dept Physiol Anat & Genet, Oxford OX1 3QX, England
[2] Karolinska Inst, Dept Lab Med, SE-14186 Huddinge, Sweden
关键词
CELL-DERIVED MICROVESICLES; AMYLOID PRECURSOR PROTEIN; PLASMA-MEMBRANE; ENDOTHELIAL-CELLS; DENDRITIC CELLS; MESSENGER-RNA; INTERCELLULAR COMMUNICATION; MULTIVESICULAR BODIES; HORIZONTAL TRANSFER; ALZHEIMERS-DISEASE;
D O I
10.1093/hmg/dds317
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Exosomes and microvesicles are extracellular nanovesicles released by most but not all cells. They are specifically equipped to mediate intercellular communication via the transfer of genetic information, including the transfer of both coding and non-coding RNAs, to recipient cells. As a result, both exosomes and microvesicles play a fundamental biological role in the regulation of normal physiological as well as aberrant pathological processes, via altered gene regulatory networks and/or via epigenetic programming. For example, microvesicle-mediated genetic transfer can regulate the maintenance of stem cell plasticity and induce beneficial cell phenotype modulation. Alternatively, such vesicles play a role in tumor pathogenesis and the spread of neurodegenerative diseases via the transfer of specific microRNAs and pathogenic proteins. Given this natural property for genetic information transfer, the possibility of exploiting these vesicles for therapeutic purposes is now being investigated. Stem cell-derived microvesicles appear to be naturally equipped to mediate tissue regeneration under certain conditions, while recent evidence suggests that exosomes might be harnessed for the targeted delivery of human genetic therapies via the introduction of exogenous genetic cargoes such as siRNA. Thus, extracellular vesicles are emerging as potent genetic information transfer agents underpinning a range of biological processes and with therapeutic potential.
引用
收藏
页码:R125 / R134
页数:10
相关论文
共 123 条
[1]   Alteration of marrow cell gene expression, protein production, and engraftment into lung by lung-derived microvesicles: A novel mechanism for phenotype modulation [J].
Aliotta, Jason M. ;
Sanchez-Guijo, Fermin M. ;
Dooner, Gerri J. ;
Johnson, Kevin W. ;
Dooner, Mark S. ;
Greer, Kenneth A. ;
Greer, Deborah ;
Pimentel, Jeffrey ;
Kolankiewicz, Lutz M. ;
Puente, Napoleon ;
Faradyan, Sam ;
Ferland, Paulette ;
Bearer, Elaine L. ;
Passero, Michael A. ;
Adedi, Mehrdad ;
Colvin, Geralt A. ;
Quesenberry, Peter J. .
STEM CELLS, 2007, 25 (09) :2245-2256
[2]   Progenitor/Stem Cell Fate Determination: Interactive Dynamics of Cell Cycle and Microvesicles [J].
Aliotta, Jason M. ;
Lee, David ;
Puente, Napoleon ;
Faradyan, Sam ;
Sears, Edmund H. ;
Amaral, Ashley ;
Goldberg, Laura ;
Dooner, Mark S. ;
Pereira, Mandy ;
Quesenberry, Peter J. .
STEM CELLS AND DEVELOPMENT, 2012, 21 (10) :1627-1638
[3]   Microvesicle entry into marrow cells mediates tissue-specific changes in mRNA by direct delivery of mRNA and induction of transcription [J].
Aliotta, Jason M. ;
Pereira, Mandy ;
Johnson, Kevin W. ;
de Paz, Nicole ;
Dooner, Mark S. ;
Puente, Napoleon ;
Ayala, Carol ;
Brilliant, Kate ;
Berz, David ;
Lee, David ;
Ramratnam, Bharat ;
McMillan, Paul N. ;
Hixson, Douglas C. ;
Josic, Djuro ;
Quesenberry, Peter J. .
EXPERIMENTAL HEMATOLOGY, 2010, 38 (03) :233-245
[4]   Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes [J].
Alvarez-Erviti, Lydia ;
Seow, Yiqi ;
Yin, HaiFang ;
Betts, Corinne ;
Lakhal, Samira ;
Wood, Matthew J. A. .
NATURE BIOTECHNOLOGY, 2011, 29 (04) :341-U179
[5]   Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission [J].
Alvarez-Erviti, Lydia ;
Seow, Yiqi ;
Schapira, Anthony H. ;
Gardiner, Chris ;
Sargent, Ian L. ;
Wood, Matthew J. A. ;
Cooper, J. Mark .
NEUROBIOLOGY OF DISEASE, 2011, 42 (03) :360-367
[6]   Syndecan-syntenin-ALIX regulates the biogenesis of exosomes [J].
Baietti, Maria Francesca ;
Zhang, Zhe ;
Mortier, Eva ;
Melchior, Aurelie ;
Degeest, Gisele ;
Geeraerts, Annelies ;
Ivarsson, Ylva ;
Depoortere, Fabienne ;
Coomans, Christien ;
Vermeiren, Elke ;
Zimmermann, Pascale ;
David, Guido .
NATURE CELL BIOLOGY, 2012, 14 (07) :677-685
[7]   Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes [J].
Baj-Krzyworzeka, M ;
Szatanek, R ;
Weglarczyk, K ;
Baran, J ;
Urbanowicz, B ;
Branski, P ;
Ratajczak, MZ ;
Zembala, M .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2006, 55 (07) :808-818
[8]   Identification of nucleotide patterns enriched in secreted RNAs as putative cis-acting elements targeting them to exosome nano-vesicles [J].
Batagov, Arsen O. ;
Kuznetsov, Vladimir A. ;
Kurochkin, Igor V. .
BMC GENOMICS, 2011, 12
[9]   Identification of a Conserved Glycan Signature for Microvesicles [J].
Batista, Bianca S. ;
Eng, William S. ;
Pilobello, Kanoelani T. ;
Hendricks-Munoz, Karen D. ;
Mahal, Lara K. .
JOURNAL OF PROTEOME RESEARCH, 2011, 10 (10) :4624-4633
[10]   Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? [J].
Bellingham, Shayne A. ;
Guo, Belinda B. ;
Coleman, Bradley M. ;
Hill, Andrew F. .
FRONTIERS IN PHYSIOLOGY, 2012, 3