Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil

被引:209
作者
Sait, M [1 ]
Davis, KER [1 ]
Janssen, PH [1 ]
机构
[1] Univ Melbourne, Dept Microbiol & Immunol, Parkville, Vic 3010, Australia
关键词
D O I
10.1128/AEM.72.3.1852-1857.2006
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The pH strongly influenced the development of colonies by members of subdivision 1 of the phylum Acidobacteria on solid laboratory media. Significantly more colonies of this group formed at pH 5.5 than at pH 7.0. At pH 5.5, 7 to 8% of colonies that formed on plates that were incubated for 4 months were formed by subdivision 1 acidobacteria. These colonies were formed by bacteria that spanned almost the entire phylogenetic breadth of the subdivision, and there was considerable congruence between the diversity of this group as determined by the cultivation-based method and by surveying 16S rRNA genes in the same soil. Members of subdivision 1 acidobacteria therefore appear to be readily culturable. An analysis of published libraries of 16S rRNAs or 16S rRNA genes showed a very strong correlation between the abundance of subdivision 1 acidobacteria in soil bacterial communities and the soil pH. Subdivision 1 acidobacteria were most abundant in libraries from soils with pHs of < 6, but rare or absent in libraries from soils with pHs of > 6.5. This, together with the selective cultivation of members of the group on lower-pH media, indicates that growth of many members of subdivision 1 acidobacteria is favored by slightly to moderately acidic growth conditions.
引用
收藏
页码:1852 / 1857
页数:6
相关论文
共 45 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]  
Axelrood PE, 2002, CAN J MICROBIOL, V48, P655, DOI [10.1139/w02-059, 10.1139/W02-059]
[3]  
Barns SM, 1999, APPL ENVIRON MICROB, V65, P1731
[4]   GenBank [J].
Benson, DA ;
Karsch-Mizrachi, I ;
Lipman, DJ ;
Ostell, J ;
Wheeler, DL .
NUCLEIC ACIDS RESEARCH, 2005, 33 :D34-D38
[5]   Molecular microbial diversity in soils from eastern Amazonia: Evidence for unusual microorganisms and microbial population shifts associated with deforestation [J].
Borneman, J ;
Triplett, EW .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (07) :2647-2653
[6]   The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis [J].
Cole, JR ;
Chai, B ;
Farris, RJ ;
Wang, Q ;
Kulam, SA ;
McGarrell, DM ;
Garrity, GM ;
Tiedje, JM .
NUCLEIC ACIDS RESEARCH, 2005, 33 :D294-D296
[7]   The domain-specific probe EUB338 is insufficient for the detection of all Bacteria:: Development and evaluation of a more comprehensive probe set [J].
Daims, H ;
Brühl, A ;
Amann, R ;
Schleifer, KH ;
Wagner, M .
SYSTEMATIC AND APPLIED MICROBIOLOGY, 1999, 22 (03) :434-444
[8]   Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria [J].
Davis, KER ;
Joseph, SJ ;
Janssen, PH .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (02) :826-834
[9]  
Dunbar J, 1999, APPL ENVIRON MICROB, V65, P1662
[10]   Empirical and theoretical bacterial diversity in four Arizona soils [J].
Dunbar, J ;
Barns, SM ;
Ticknor, LO ;
Kuske, CR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (06) :3035-3045