One-dimensional strongly interacting Luttinger liquid of lattice spinless fermions

被引:17
作者
Karnaukhov, IN
Ovchinnikov, AA
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Joint Inst Chem Phys, Moscow 117334, Russia
[3] Inst Met Phys, UA-03142 Kiev, Ukraine
来源
EUROPHYSICS LETTERS | 2002年 / 57卷 / 04期
关键词
D O I
10.1209/epl/i2002-00495-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the spinless fermion model with hard-core repulsive potential between particles extended on a few lattice sites delta. The Luttinger-liquid behavior is studied for different values of a hard-core radius. We derive a critical exponent Theta of the one-particle correlation function [c(i)(dagger)c(j)] for an arbitrary electron density and coupling constant. Our results show that at high density the behavior of fermions can be described as a strongly interacting Luttinger liquid with Phi > 1. As a result, the residual Fermi surface disappears.
引用
收藏
页码:540 / 545
页数:6
相关论文
共 14 条
[1]   Exact solution of the asymmetric exclusion model with particles of arbitrary size [J].
Alcaraz, FC ;
Bariev, RZ .
PHYSICAL REVIEW E, 1999, 60 (01) :79-88
[2]  
ALCARAZ FC, CONDMAT9904042
[3]   Temperature-dependent spatial oscillations in the correlations of the XXZ spin chain [J].
Fabricius, K ;
Klümper, A ;
McCoy, BM .
PHYSICAL REVIEW LETTERS, 1999, 82 (26) :5365-5368
[4]  
HALDANE FDM, 1980, PHYS REV LETT, V45, P1358, DOI 10.1103/PhysRevLett.45.1358
[5]   LUTTINGER LIQUID THEORY OF ONE-DIMENSIONAL QUANTUM FLUIDS .1. PROPERTIES OF THE LUTTINGER MODEL AND THEIR EXTENSION TO THE GENERAL 1D INTERACTING SPINLESS FERMI GAS [J].
HALDANE, FDM .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1981, 14 (19) :2585-2609
[6]   From the integrable one-parameter Lai-Sutherland model to a strongly interacting Luttinger liquid state [J].
Karnaukhov, IN .
EUROPHYSICS LETTERS, 2000, 52 (05) :571-577
[7]  
KARNAUKHOV IN, IN PRESS J PHYS COND
[8]  
KLUMPER A, CONDMAT0004379
[9]   CORRELATION EXPONENTS AND THE METAL-INSULATOR-TRANSITION IN THE ONE-DIMENSIONAL HUBBARD-MODEL [J].
SCHULZ, HJ .
PHYSICAL REVIEW LETTERS, 1990, 64 (23) :2831-2834
[10]  
SKAI K, 1999, PHYS REV B, V60, P5186