Almost-complex and almost-product Einstein manifolds from a variational principle

被引:30
作者
Borowiec, A
Ferraris, M
Francaviglia, M
Volovich, I
机构
[1] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
[2] Russian Acad Sci, VA Steklov Math Inst, Moscow 117966, Russia
关键词
D O I
10.1063/1.532899
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the first-order (Palatini) variational principle for a generic nonlinear metric-affine Lagrangian depending on the (symmetrized) Ricci square invariant leads to an almost-product Einstein structure or to an almost-complex anti-Hermitian Einstein structure on a manifold. It is proved that a real anti-Hermitian metric on a complex manifold satisfies the Kahler condition on the same manifold treated as a real manifold if and only if the metric is the real part of a holomorphic metric. A characterization of anti-Kahler Einstein manifolds and almost-product Einstein manifolds is obtained. Examples of such manifolds are considered. (C) 1999 American Institute of Physics. [S0022-2488(99)03107-2].
引用
收藏
页码:3446 / 3464
页数:19
相关论文
共 60 条
[31]  
GOLDBERG SI, 1969, P AM MATH SOC, V21, P96
[32]  
GRAY A, 1967, J MATH MECH, V16, P715
[33]   AN ULTRA-HYPERBOLIC ANALOG OF THE ROBINSON-KERR THEOREM [J].
GUILLEMIN, V ;
STERNBERG, S .
LETTERS IN MATHEMATICAL PHYSICS, 1986, 12 (01) :1-6
[34]   SIGNATURE CHANGE IN GENERAL-RELATIVITY [J].
HAYWARD, SA .
CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (08) :1851-1862
[35]  
Hervella L.M., 1980, ANN MAT PUR APPL, V123, P35, DOI DOI 10.1007/BF01796539
[36]  
HITCHIN NJ, 1982, LECT NOTES MATH, V970, P73
[37]  
Horn R. A., 1986, Matrix analysis
[38]  
KOBAVASHI S, 1963, FDN DIFFERENTIAL GEO, V2
[39]  
Kobayashi S., 1972, TRANSFORMATION GROUP, DOI 10.1007/978-3-642-61981-6
[40]  
LEBRUN C, 1983, T AM MATH SOC, V278, P209