Influence of Embedded Nanocontainers on the Efficiency of Active Anticorrosive Coatings for Aluminum Alloys Part II: Influence of Nanocontainer Position

被引:78
作者
Borisova, Dimitriya [1 ]
Moehwald, Helmuth [1 ]
Shchukin, Dmitry G. [1 ,2 ]
机构
[1] Max Planck Inst Colloids & Interfaces, D-14424 Potsdam, Germany
[2] Univ Liverpool, Dept Chem, Stephenson Inst Renewable Energy, Liverpool L69 4ZF, Merseyside, England
关键词
silica; nanocontainer; corrosion inhibitor; sol-gel; self-healing; aluminum alloy; SOL-GEL COATINGS; SELF-HEALING COATINGS; CORROSION PROTECTION; ADHESION; INHIBITORS; AA2024-T3; CHROMATE;
D O I
10.1021/am302141y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The present work contributes to the coating design of active anticorrosive coatings for the aluminum alloy, AA2024-T3. Part II is a continuation of Part I: Influence of Nanocontainer Concentration and describes further surprising aspects of the design of nanocontainer based active anticorrosive coatings, which influence their performance. The studied coating system consists of a passive sol gel (SiOx/ZrOx) matrix and inhibitor (2-mercaptobenzothiazole) loaded mesoporous silica nanocontainers (MBT@NCs), which are dispersed only in half of the coating volume. Varying position and concentration of MBT@NCs the synergetic effect of inhibitor amount and path length on the metal surface were analyzed, considering the balance between optimum barrier properties, active protection and adhesion. The impact of MBT@NC position on passive and active corrosion resistance was investigated by electrochemical impedance spectroscopy and scanning vibrating electrode technique. Increasing the distance between MBT@NCs and metal surface led to better barrier properties but worse active corrosion inhibition. These findings improve the understanding of the factors influencing the overall performance of active anticorrosive coatings and enable the development of a coating system with optimum anticorrosion efficiency.
引用
收藏
页码:80 / 87
页数:8
相关论文
共 30 条
[11]   Technical note:: Concerning the conversion of the constant phase element parameter Y0 into a capacitance [J].
Hsu, CH ;
Mansfeld, F .
CORROSION, 2001, 57 (09) :747-748
[12]   Designing green, self-healing coatings for metal protection [J].
Hughes, Anthony E. ;
Cole, Ivan S. ;
Muster, Tim H. ;
Varley, Russel J. .
NPG ASIA MATERIALS, 2010, 2 (04) :143-151
[13]  
Kral J., 2011, 2011 INSTR MEAS TECH, P1
[14]   High effective organic corrosion inhibitors for 2024 aluminium alloy [J].
Lamaka, S. V. ;
Zheludkevich, M. L. ;
Yasakau, K. A. ;
Montemor, M. F. ;
Ferreira, M. G. S. .
ELECTROCHIMICA ACTA, 2007, 52 (25) :7231-7247
[15]   Quasi-simultaneous measurements of ionic currents by vibrating probe and pH distribution by ion-selective microelectrode [J].
Lamaka, S. V. ;
Taryba, M. ;
Montemor, M. F. ;
Isaacs, H. S. ;
Ferreira, M. G. S. .
ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (01) :20-23
[16]   Polyfunctional active coatings with damage-triggered water-repelling effect [J].
Latnikova, Alexandra ;
Grigoriev, Dmitry O. ;
Hartmann, Juergen ;
Moehwald, Helmuth ;
Shchukin, Dmitry G. .
SOFT MATTER, 2011, 7 (02) :369-372
[17]   Halloysite clay nanotubes for controlled release of protective agents [J].
Lvov, Yuri M. ;
Shchukin, Dmitry G. ;
Mohwald, Helmuth ;
Price, Ronald R. .
ACS NANO, 2008, 2 (05) :814-820
[18]   Silica nanocontainers for active corrosion protection [J].
Maia, Frederico ;
Tedim, Joao ;
Lisenkov, Aleksey D. ;
Salak, Andrei N. ;
Zheludkevich, Mikhail L. ;
Ferreira, Mario G. S. .
NANOSCALE, 2012, 4 (04) :1287-1298
[19]   Comparison between the inhibition efficiencies of Ce(III) and Ce(IV) ammonium nitrates against corrosion of AA2024 aluminum alloy in solutions of low chloride concentration [J].
Matter, E. A. ;
Kozhukharov, S. ;
Machkova, M. ;
Kozhukharov, V. .
CORROSION SCIENCE, 2012, 62 :22-33
[20]  
MOHLER JB, 1983, MET FINISH, V81, P71