On the dominance of trivial knots among SAPs on a cubic lattice

被引:30
作者
Yao, A
Matsuda, H
Tsukahara, H
Shimamura, MK
Deguchi, T
机构
[1] Chuo Univ, Fac Sci & Engn, Dept Phys, Bunkyo Ku, Tokyo 1128551, Japan
[2] Hitachi Software Engn Co Ltd, Geog Informat Syst Dept, Chuo Ku, Sapporo, Hokkaido 0600003, Japan
[3] Univ Tokyo, Grad Sch Frontier Sci, Bunkyo Ku, Tokyo 1138656, Japan
[4] Ochanomizu Univ, Fac Sci, Dept Phys, Bunkyo Ku, Tokyo 1128610, Japan
[5] Ochanomizu Univ, Grad Sch Humanities & Sci, Bunkyo Ku, Tokyo 1128610, Japan
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 37期
关键词
D O I
10.1088/0305-4470/34/37/310
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The knotting probability is defined by the probability with which an N-step self-avoiding polygon (SAP) with a fixed type of knot appears in the configuration space. We evaluate these probabilities for some knot types on a simple cubic lattice. For the trivial knot, we find that the knotting probability decays much slower for the SAP on the cubic lattice than for continuum models of the SAP as a function of N. In particular the characteristic length of the trivial knot that corresponds to a 'half-life' of the knotting probability is estimated to be 2.5 x 10(5) on the cubic lattice.
引用
收藏
页码:7563 / 7577
页数:15
相关论文
共 33 条
[1]  
[Anonymous], 1994, J KNOT THEOR RAMIF
[3]   MONTE-CARLO STUDY OF FREELY JOINTED RING POLYMERS .2. THE WRITHING NUMBER [J].
CHEN, YD .
JOURNAL OF CHEMICAL PHYSICS, 1981, 75 (05) :2447-2453
[5]   A NEW ALGORITHM FOR NUMERICAL-CALCULATION OF LINK INVARIANTS [J].
DEGUCHI, T ;
TSURUSAKI, K .
PHYSICS LETTERS A, 1993, 174 (1-2) :29-37
[6]   Universality of random knotting [J].
Deguchi, T ;
Tsurusaki, K .
PHYSICAL REVIEW E, 1997, 55 (05) :6245-6248
[7]  
Deguchi T, 1997, LECT NOTES PURE APPL, V184, P557
[8]  
DEGUCHI T, 1995, P GEOM PHYS I MATH U
[9]  
DEGUCHI T, 1997, LECT KNOTS 96, P95
[10]  
Delbruck M., 1962, PROCEEDING S APPL MA, V14, P55, DOI DOI 10.1090/PSAPM/014