Universality of random knotting

被引:94
作者
Deguchi, T [1 ]
Tsurusaki, K [1 ]
机构
[1] KANAGAWA IND TECHNOL RES INST, DIV MOL ENGN, EBINA CITY, KANAGAWA 24304, JAPAN
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 05期
关键词
D O I
10.1103/PhysRevE.55.6245
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Knotting probability [P-K(N)] is defined by the probability of an N-noded random polygon being topologically equivalent to a given knot K. For several nontrivial knots we numerically evaluate the knotting probabilities for Gaussian and rod-bead models. We find that they are well approximated by the following formula: P-K(N)=C(K)[(N) over tilde/N(K)](m(K))exp[-(N) over tilde/N(K)] where (N) over tilde=N-N-ini(K), and that the fitting parameters C(K); N(K), and N-ini(K) are model dependent, while m(K) is not. We suggest that given a knot K, the exponent m(K) should be universal: it is independent of models of random polygon and is determined only by the knot K.
引用
收藏
页码:6245 / 6248
页数:4
相关论文
共 36 条
[1]  
[Anonymous], 1994, J KNOT THEOR RAMIF
[2]   ON THE VASSILIEV KNOT INVARIANTS [J].
BARNATAN, D .
TOPOLOGY, 1995, 34 (02) :423-472
[3]   KNOT POLYNOMIALS AND VASSILIEV INVARIANTS [J].
BIRMAN, JS ;
LIN, XS .
INVENTIONES MATHEMATICAE, 1993, 111 (02) :225-270
[4]  
Burde G., 1985, Knots
[6]   MONTE-CARLO STUDY OF FREELY JOINTED RING POLYMERS .2. THE WRITHING NUMBER [J].
CHEN, YD .
JOURNAL OF CHEMICAL PHYSICS, 1981, 75 (05) :2447-2453
[8]  
Dean F.B., 1985, J BIOL CHEM, V260, P4795
[9]   A NEW ALGORITHM FOR NUMERICAL-CALCULATION OF LINK INVARIANTS [J].
DEGUCHI, T ;
TSURUSAKI, K .
PHYSICS LETTERS A, 1993, 174 (1-2) :29-37
[10]   TOPOLOGY OF CLOSED RANDOM POLYGONS [J].
DEGUCHI, T ;
TSURUSAKI, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (05) :1411-1414