Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: Compression experiments and dislocation dynamics simulations

被引:184
作者
Greer, Julia R. [1 ]
Weinberger, Christopher R. [2 ]
Cai, Wei [2 ]
机构
[1] CALTECH, Dept Mat Sci, Pasadena, CA 91125 USA
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2008年 / 493卷 / 1-2期
基金
美国国家科学基金会;
关键词
dislocations; nano-scale plasticity; stress;
D O I
10.1016/j.msea.2007.08.093
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We compare mechanical strength of f.c.c. gold and b.c.c. molybdenum single crystal pillars of sub-micrometer diameter in uniaxial compression tests. Both crystals show an increase of flow stress with decreasing diameter, but the change is more pronounced in Au than in Mo. The ratio between the observed maximum flow stress and the theoretical strength is much larger in An pillars than in Mo pillars. Dislocation dynamics simulations also reveal different dislocation behavior in these two metals. While in a f.c.c. crystal a dislocation loop nucleated from the surface simply moves on its glide plane and exits the pillar, in a b.c.c. crystal it can generate multiple new dislocations due to the ease of screw dislocations to change slip planes. We postulate that this difference in dislocation behavior is the fundamental reason for the observed difference in the plastic deformation behavior of f.c.c. and b.c.c. pillars. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:21 / 25
页数:5
相关论文
共 33 条
[1]   Enabling strain hardening simulations with dislocation dynamics [J].
Arsenlis, A. ;
Cai, W. ;
Tang, M. ;
Rhee, M. ;
Oppelstrup, T. ;
Hommes, G. ;
Pierce, T. G. ;
Bulatov, V. V. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2007, 15 (06) :553-595
[2]  
BULATOV V, 2004, P 2004 ACM IEEE C SU, P19, DOI DOI 10.1109/SC.2004.53
[3]   Mobility laws in dislocation dynamics simulations [J].
Cai, W ;
Bulatov, VV .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 387 :277-281
[4]  
Cai W, 2004, SOLID MECH APPL, V115, P1
[5]  
DEVINCRE B, 1997, MAT SCI ENG A-STRUCT, V8, P234
[6]  
Eshelby J. D., 1979, Dislocations in solids, vol.1. The elastic theory, P167
[7]   Modeling plasticity at the micrometer scale [J].
Gao, H ;
Huang, Y ;
Nix, WD .
NATURWISSENSCHAFTEN, 1999, 86 (11) :507-515
[8]   Mechanism-based strain gradient plasticity - I. Theory [J].
Gao, H ;
Huang, Y ;
Nix, WD ;
Hutchinson, JW .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1999, 47 (06) :1239-1263
[9]   Fast-sum method for the elastic field off three-dimensional dislocation ensembles [J].
Ghoniem, NM ;
Sun, LZ .
PHYSICAL REVIEW B, 1999, 60 (01) :128-140
[10]  
Ghoniem NM, 2005, PHILOS MAG, V85, P2809, DOI 10.1080/14786410500155138