Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution

被引:249
作者
Fischer, E. V. [1 ]
Jacob, D. J. [2 ]
Yantosca, R. M. [2 ]
Sulprizio, M. P. [2 ]
Millet, D. B. [3 ]
Mao, J. [4 ]
Paulot, F. [1 ]
Singh, H. B. [5 ]
Roiger, A. [6 ]
Ries, L. [7 ]
Talbot, R. W. [8 ]
Dzepina, K. [9 ]
Deolal, S. Pandey [10 ]
机构
[1] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Univ Minnesota, Dept Soil Water & Climate, St Paul, MN 55108 USA
[4] Princeton Univ, GFDL, Princeton, NJ 08544 USA
[5] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[6] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Phys Atmosphare, Oberpfaffenhofen, Germany
[7] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX USA
[8] GAW Global Stn Zugspitze Hohenpeissenberg, Fed Environm Agcy, Zugspitze, Germany
[9] Michigan Technol Univ, Dept Chem, Houghton, MI 49931 USA
[10] Bluesign Technol AG, St Gallen, Switzerland
基金
美国国家科学基金会;
关键词
VOLATILE ORGANIC-COMPOUNDS; LONG-RANGE TRANSPORT; OZONE PRODUCTION EFFICIENCIES; BIOMASS BURNING EMISSIONS; DIFFERENT SOURCE REGIONS; NITRIC ANHYDRIDES PANS; LOWER FREE TROPOSPHERE; TROPICAL RAIN-FOREST; METHYL VINYL KETONE; PEARL RIVER DELTA;
D O I
10.5194/acp-14-2679-2014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Peroxyacetyl nitrate (PAN) formed in the atmospheric oxidation of non-methane volatile organic compounds (NMVOCs) is the principal tropospheric reservoir for nitrogen oxide radicals (NOx = NO+ NO2). PAN enables the transport and release of NOx to the remote troposphere with major implications for the global distributions of ozone and OH, the main tropospheric oxidants. Simulation of PAN is a challenge for global models because of the dependence of PAN on vertical transport as well as complex and uncertain NMVOC sources and chemistry. Here we use an improved representation of NMVOCs in a global 3-D chemical transport model (GEOS-Chem) and show that it can simulate PAN observations from aircraft campaigns worldwide. The immediate carbonyl precursors for PAN formation include acetaldehyde (44% of the global source), methylglyoxal (30%), acetone (7%), and a suite of other isoprene and terpene oxidation products (19%). A diversity of NMVOC emissions is responsible for PAN formation globally including isoprene (37%) and alkanes (14%). Anthropogenic sources are dominant in the extratropical Northern Hemisphere outside the growing season. Open fires appear to play little role except at high northern latitudes in spring, although results are very sensitive to plume chemistry and plume rise. Lightning NOx is the dominant contributor to the observed PAN maximum in the free troposphere over the South Atlantic.
引用
收藏
页码:2679 / 2698
页数:20
相关论文
共 167 条
[51]   Atmospheric oxidation capacity sustained by a tropical forest [J].
Lelieveld, J. ;
Butler, T. M. ;
Crowley, J. N. ;
Dillon, T. J. ;
Fischer, H. ;
Ganzeveld, L. ;
Harder, H. ;
Lawrence, M. G. ;
Martinez, M. ;
Taraborrelli, D. ;
Williams, J. .
NATURE, 2008, 452 (7188) :737-740
[52]   Impacts of enhanced biomass burning in the boreal forests in 1998 on tropospheric chemistry and the sensitivity of model results to the injection height of emissions [J].
Leung, Fok-Yan T. ;
Logan, Jennifer A. ;
Park, Rokjin ;
Hyer, Edward ;
Kasischke, Eric ;
Streets, David ;
Yurganov, Leonid .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D10)
[53]   Reactive nitrogen, ozone and ozone production in the Arctic troposphere and the impact of stratosphere-troposphere exchange [J].
Liang, Q. ;
Rodriguez, J. M. ;
Douglass, A. R. ;
Crawford, J. H. ;
Olson, J. R. ;
Apel, E. ;
Bian, H. ;
Blake, D. R. ;
Brune, W. ;
Chin, M. ;
Colarco, P. R. ;
da Silva, A. ;
Diskin, G. S. ;
Duncan, B. N. ;
Huey, L. G. ;
Knapp, D. J. ;
Montzka, D. D. ;
Nielsen, J. E. ;
Pawson, S. ;
Riemer, D. D. ;
Weinheimer, A. J. ;
Wisthaler, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (24) :13181-13199
[54]   Evidence of Reactive Aromatics As a Major Source of Peroxy Acetyl Nitrate over China [J].
Liu, Zhen ;
Wang, Yuhang ;
Gu, Dasa ;
Zhao, Chun ;
Huey, L. Gregory ;
Stickel, Robert ;
Liao, Jin ;
Shao, Min ;
Zhu, Tong ;
Zeng, Limin ;
Liu, Shaw-Chen ;
Chang, Chih-Chung ;
Amoroso, Antonio ;
Costabile, Francesca .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (18) :7017-7022
[55]   Estimation of background concentrations of trace gases at the Swiss Alpine site Jungfraujoch (3580 m asl) [J].
Loeoev, J. M. Balzani ;
Henne, S. ;
Legreid, G. ;
Staehelin, J. ;
Reimann, S. ;
Prevot, A. S. H. ;
Steinbacher, M. ;
Vollmer, M. K. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113
[56]   A CHEMICAL MECHANISM FOR USE IN LONG-RANGE TRANSPORT ACID DEPOSITION COMPUTER MODELING [J].
LURMANN, FW ;
LLOYD, AC ;
ATKINSON, R .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1986, 91 (D10) :905-936
[57]   Interannual variability of ozone and carbon monoxide at the Whistler high elevation site: 2002-2006 [J].
Macdonald, A. M. ;
Anlauf, K. G. ;
Leaitch, W. R. ;
Chan, E. ;
Tarasick, D. W. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (22) :11431-11446
[58]   Chemical characteristics of air from different source regions during the second Pacific Exploratory Mission in the Tropics (PEM-Tropics B) [J].
Maloney, JC ;
Fuelberg, HE ;
Avery, MA ;
Crawford, JH ;
Blake, DR ;
Heikes, BG ;
Sachse, GW ;
Sandholm, ST ;
Singh, H ;
Talbot, RW .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D23) :32609-32625
[59]   Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols [J].
Mao, J. ;
Fan, S. ;
Jacob, D. J. ;
Travis, K. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (02) :509-519
[60]   Insights into hydroxyl measurements and atmospheric oxidation in a California forest [J].
Mao, J. ;
Ren, X. ;
Zhang, L. ;
Van Duin, D. M. ;
Cohen, R. C. ;
Park, J. -H. ;
Goldstein, A. H. ;
Paulot, F. ;
Beaver, M. R. ;
Crounse, J. D. ;
Wennberg, P. O. ;
DiGangi, J. P. ;
Henry, S. B. ;
Keutsch, F. N. ;
Park, C. ;
Schade, G. W. ;
Wolfe, G. M. ;
Thornton, J. A. ;
Brune, W. H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (17) :8009-8020