This ex vivo study in rat frontal cortex determined the influence of 5-HT receptor agonists and antagonists on EEDQ-induced depletion of 5-HT2A binding sites and reduction in their functional coupling to phospholipid hydrolysis. Twenty-four hours after EEDQ (6 mg/kg) administration a marked reduction (66%) of cortical 5-HT2A binding sites with no change in binding affinity was observed. The 5HT(2A) antagonists ritanserin (1 mg/kg), ketanserin (1 and 5 mg/kg), metergoline (3 mg/kg) or the 5HT(2A) agonist, DOI (3 and 10 mg/kg) also significantly reduced (by 15-44%) these binding sites 24 h after injection. Thirty minute pretreatment with ritanserin, ketanserin, metergoline or DOI (at the doses above) afforded 49-65% protection against the loss of 5-HT2A binding sites induced by EEDQ (6 mg/kg). DOI (10 mg/kg) pretreatment (-24 h) decreased by 26% the accumulation of [H-3]inositol phosphates (IPs) evoked by 5-HT (100 mu M), but did not affect that produced by DOI (100 mu M). Ketanserin (5 mg/kg, -24 h) decreased 5-HT- and DOI-induced IP formation by 65% and 53%, respectively. The EEDQ (6 mg/kg, -24 h)-evoked reductions (-50%) of 5-HT- and DOI-induced IP formation were not altered by DOI (10 mg/kg) or ketanserin (5 mg/kg) given 30 min before EEDQ. G-protein-stimulated IP accumulation was unaffected by EEDQ (6 mg/kg). Overall, EEDQ reduces 5-HT2A binding sites and function in rat frontal cortex, whereas its effects on binding were attenuated by various 5-HT receptor antagonists and agonists, its effects on function was unaltered by these drugs. (C) 1999 Elsevier Science Ltd. All rights reserved.