Form factors, KdV and deformed hyperelliptic curves.

被引:3
作者
Babelon, O [1 ]
Bernard, D [1 ]
Smirnov, FA [1 ]
机构
[1] CEA,LAB DIRECT SCI MAT,SERV PHYS THEOR SACLAY,F-91191 GIF SUR YVETTE,FRANCE
关键词
D O I
10.1016/S0920-5632(97)00410-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We review and summarize recent works on the relation between form factors in integrable quantum field theory and deformation of geometrical data associated to hyper-elliptic curves. This relation, which is based on a deformation of the Riemann bilinear identity, in particular leads to the notion of null vectors in integrable field theory and to a new description of the KdV hierarchy.
引用
收藏
页码:21 / 33
页数:13
相关论文
共 12 条
[1]  
BABELON O, IN PRESS COMM MATH P
[2]  
BELOKOLOS ED, 1994, ALGEBRA GEOMETRIC AP
[3]  
Dickey L.A., 1991, ADV SERIES MATH PHYS, V12
[4]  
Dubrovin B. A., 1989, RUSS MATH SURV, V44, P35, DOI 10.1070/RM1989v044n06ABEH002300
[5]   MULTIPHASE AVERAGING AND THE INVERSE SPECTRAL SOLUTION OF THE KORTEWEG-DEVRIES EQUATION [J].
FLASCHKA, H ;
FOREST, MG ;
MCLAUGHLIN, DW .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (06) :739-784
[6]  
KRICHEVER IM, 1988, FUNCT ANAL APPL+, V22, P200
[7]  
Smirnov F., 1992, ADV SERIES MATH PHYS, V14
[8]   On the deformation of Abelian integrals [J].
Smirnov, FA .
LETTERS IN MATHEMATICAL PHYSICS, 1996, 36 (03) :267-275
[9]   COUNTING THE LOCAL-FIELDS IN SINE-GORDON THEORY [J].
SMIRNOV, FA .
NUCLEAR PHYSICS B, 1995, 453 (03) :807-824
[10]  
SMIRNOV FA, 1995, IN PRESS P BUCK C