Fractional Langevin equation: Overdamped, underdamped, and critical behaviors

被引:121
作者
Burov, S. [1 ]
Barkai, E. [1 ]
机构
[1] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 03期
关键词
D O I
10.1103/PhysRevE.78.031112
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The dynamical phase diagram of the fractional Langevin equation is investigated for a harmonically bound particle. It is shown that critical exponents mark dynamical transitions in the behavior of the system. Four different critical exponents are found. (i) alpha(c)=0.402 +/- 0.002 marks a transition to a nonmonotonic underdamped phase, (ii) alpha(R)=0.441... marks a transition to a resonance phase when an external oscillating field drives the system, and (iii) alpha(chi 1)=0.527... and (iv) alpha(chi 2)=0.707... mark transitions to a double-peak phase of the "loss" when such an oscillating field present. As a physical explanation we present a cage effect, where the medium induces an elastic type of friction. Phase diagrams describing over and underdamped regimes, with or without resonances, show behaviors different from normal.
引用
收藏
页数:18
相关论文
共 52 条
[1]  
Abramowitz M, 1971, HDB MATH FUNCTIONS F
[2]   Dynamics of the fractional oscillator [J].
Achar, BNN ;
Hanneken, JW ;
Enck, T ;
Clarke, T .
PHYSICA A, 2001, 297 (3-4) :361-367
[3]   FOKKER-PLANCK EQUATIONS FOR SIMPLE NON-MARKOVIAN SYSTEMS [J].
ADELMAN, SA .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (01) :124-130
[4]  
[Anonymous], 1994, P 12 IMACS WORLD C G
[5]   Non-Markovian Brownian dynamics and nonergodicity -: art. no. 061107 [J].
Bao, JD ;
Hänggi, P ;
Zhuo, YZ .
PHYSICAL REVIEW E, 2005, 72 (06)
[6]   Linear response to perturbation of nonexponential renewal processes [J].
Barbi, F ;
Bologna, M ;
Grigolini, P .
PHYSICAL REVIEW LETTERS, 2005, 95 (22)
[7]   Fractional Kramers equation [J].
Barkai, E ;
Silbey, RJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16) :3866-3874
[8]   Fractional Fokker-Planck equation, solution, and application [J].
Barkai, E .
PHYSICAL REVIEW E, 2001, 63 (04)
[9]   Critical exponent of the fractional Langevin equation [J].
Burov, S. ;
Barkai, E. .
PHYSICAL REVIEW LETTERS, 2008, 100 (07)
[10]   Complex chemical kinetics in single enzyme molecules: Kramers's model with fractional Gaussian noise [J].
Chaudhury, Srabanti ;
Cherayil, Binny J. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (02)