Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism

被引:730
作者
Riefler, M
Novak, O
Strnad, M
Schmulling, T [1 ]
机构
[1] Free Univ Berlin, Inst Biol Appl Genet, D-14195 Berlin, Germany
[2] Palacky Univ, Lab Growth Regulators, CZ-78371 Olomouc, Czech Republic
[3] Acad Sci Czech Republ, Inst Expt Bot, CZ-78371 Olomouc, Czech Republic
关键词
D O I
10.1105/tpc.105.037796
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We used loss-of-function mutants to study three Arabidopsis thaliana sensor histidine kinases, AHK2, AHK3, and CRE1/AHK4, known to be cytokinin receptors. Mutant seeds had more rapid germination, reduced requirement for light, and decreased far-red light sensitivity, unraveling cytokinin functions in seed germination control. Triple mutant seeds were more than twice as large as wild-type seeds. Genetic analysis indicated a cytokinin-dependent endospermal and/or maternal control of embryo size. Unchanged red light sensitivity of mutant hypocotyl elongation suggests that previously reported modulation of red light signaling by A-type response regulators may not depend on cytokinin. Combined loss of AHK2 and AHK3 led to the most prominent changes during vegetative development. Leaves of ahk2 ahk3 mutants formed fewer cells, had reduced chlorophyll content, and lacked the cytokinin-dependent inhibition of dark-induced chlorophyll loss, indicating a prominent role of AHK2 and, particularly, AHK3 in the control of leaf development. ahk2 ahk3 double mutants developed a strongly enhanced root system through faster growth of the primary root and, more importantly, increased branching. This result supports a negative regulatory role for cytokinin in root growth regulation. Increased cytokinin content of receptor mutants indicates a homeostatic control of steady state cytokinin levels through signaling. Together, the analyses reveal partially redundant functions of the cytokinin receptors and prominent roles for the AHK2/AHK3 receptor combination in quantitative control of organ growth in plants, with opposite regulatory functions in roots and shoots.
引用
收藏
页码:40 / 54
页数:15
相关论文
共 66 条
[1]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[2]   Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana [J].
Alonso-Blanco, C ;
Blankestijn-de Vries, H ;
Hanhart, CJ ;
Koornneef, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (08) :4710-4717
[3]   The CHASE domain: a predicted ligand-binding module in plant cytokinin receptors and other eukaryotic and bacterial receptors [J].
Anantharaman, V ;
Aravind, L .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (10) :579-582
[4]   Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis [J].
Bao, F ;
Shen, JJ ;
Brady, SR ;
Muday, GK ;
Asami, T ;
Yang, ZB .
PLANT PHYSIOLOGY, 2004, 134 (04) :1624-1631
[5]  
BENTSINK L, 2002, ARABIDOPSIS BOOK
[6]   Treatment of Vicia faba root tip cells with specific inhibitors to cyclin-dependent kinases leads to abnormal spindle formation [J].
Binarová, P ;
Dolezel, J ;
Draber, P ;
Heberle-Bors, E ;
Strnad, M ;
Bögre, L .
PLANT JOURNAL, 1998, 16 (06) :697-707
[7]   A REVERSIBLE PHOTOREACTION CONTROLLING SEED GERMINATION [J].
BORTHWICK, HA ;
HENDRICKS, SB ;
PARKER, MW ;
TOOLE, EH ;
TOOLE, VK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1952, 38 (08) :662-666
[8]   Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades [J].
Brenner, WG ;
Romanov, GA ;
Köllmer, I ;
Bürkle, L ;
Schmülling, T .
PLANT JOURNAL, 2005, 44 (02) :314-333
[9]   Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis [J].
Buchanan-Wollaston, V ;
Page, T ;
Harrison, E ;
Breeze, E ;
Lim, PO ;
Nam, HG ;
Lin, JF ;
Wu, SH ;
Swidzinski, J ;
Ishizaki, K ;
Leaver, CJ .
PLANT JOURNAL, 2005, 42 (04) :567-585
[10]   Dissecting Arabidopsis lateral root development [J].
Casimiro, I ;
Beeckman, T ;
Graham, N ;
Bhalerao, R ;
Zhang, HM ;
Casero, P ;
Sandberg, G ;
Bennett, MJ .
TRENDS IN PLANT SCIENCE, 2003, 8 (04) :165-171