Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis

被引:826
作者
Buchanan-Wollaston, V [1 ]
Page, T
Harrison, E
Breeze, E
Lim, PO
Nam, HG
Lin, JF
Wu, SH
Swidzinski, J
Ishizaki, K
Leaver, CJ
机构
[1] Univ Warwick, Warwick HRI, Wellesbourne CV35 9EF, Warwick, England
[2] POSTECH, Div Mol & Life Sci, Pohang 790784, South Korea
[3] Jeju Natl Univ, Dept Sci Educ, Cheju 690756, South Korea
[4] Acad Sinica, Inst Bot, Taipei 11529, Taiwan
[5] Univ Oxford, Dept Plant Sci, Oxford OX1 3RB, England
[6] Univ Toronto, Dept Bot, Toronto, ON M5S 3B2, Canada
关键词
senescence; development; dark-induced; cell suspension; signalling pathways; salicylic acid;
D O I
10.1111/j.1365-313X.2005.02399.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
An analysis of changes in global gene expression patterns during developmental leaf senescence in Arabidopsis has identified more than 800 genes that show a reproducible increase in transcript abundance. This extensive change illustrates the dramatic alterations in cell metabolism that underpin the developmental transition from a photosynthetically active leaf to a senescing organ which functions as a source of mobilizable nutrients. Comparison of changes in gene expression patterns during natural leaf senescence with those identified, when senescence is artificially induced in leaves induced to senesce by darkness or during sucrose starvation-induced senescence in cell suspension cultures, has shown not only similarities but also considerable differences. The data suggest that alternative pathways for essential metabolic processes such as nitrogen mobilization are used in different senescent systems. Gene expression patterns in the senescent cell suspension cultures are more similar to those for dark-induced senescence and this may be a consequence of sugar starvation in both tissues. Gene expression analysis in senescing leaves of plant lines defective in signalling pathways involving salicylic acid (SA), jasmonic acid (JA) and ethylene has shown that these three pathways are all required for expression of many genes during developmental senescence. The JA/ethylene pathways also appear to operate in regulating gene expression in dark-induced and cell suspension senescence whereas the SA pathway is not involved. The importance of the SA pathway in the senescence process is illustrated by the discovery that developmental leaf senescence, but not dark-induced senescence, is delayed in plants defective in the SA pathway.
引用
收藏
页码:567 / 585
页数:19
相关论文
共 70 条
[1]   EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis [J].
Alonso, JM ;
Hirayama, T ;
Roman, G ;
Nourizadeh, S ;
Ecker, JR .
SCIENCE, 1999, 284 (5423) :2148-2152
[2]   A transcriptional timetable of autumn senescence -: art. no. R24 [J].
Andersson, A ;
Keskitalo, J ;
Sjödin, A ;
Bhalerao, R ;
Sterky, F ;
Wissel, K ;
Tandre, K ;
Aspeborg, H ;
Moyle, R ;
Ohmiya, Y ;
Bhalerao, R ;
Brunner, A ;
Gustafsson, P ;
Karlsson, J ;
Lundeberg, J ;
Nilsson, O ;
Sandberg, G ;
Strauss, S ;
Sundberg, B ;
Uhlen, M ;
Jansson, S ;
Nilsson, P .
GENOME BIOLOGY, 2004, 5 (04)
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]  
BECKER W, 1993, PLANTA, V189, P74, DOI 10.1007/BF00201346
[5]   The early light-induced protein is also produced during leaf senescence of Nicotiana tabacum [J].
Binyamin, L ;
Falah, M ;
Portnoy, V ;
Soudry, E ;
Gepstein, S .
PLANTA, 2001, 212 (04) :591-597
[6]   GABA in plants:: just a metabolite? [J].
Bouché, N ;
Fromm, H .
TRENDS IN PLANT SCIENCE, 2004, 9 (03) :110-115
[7]   Mitochondrial succinic-semialdehyde dehydrogenase of the γ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants [J].
Bouché, N ;
Fait, A ;
Bouchez, D ;
Moller, SG ;
Fromm, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (11) :6843-6848
[8]   Growth stage-based phenotypic analysis of arabidopsis:: A model for high throughput functional genomics in plants [J].
Boyes, DC ;
Zayed, AM ;
Ascenzi, R ;
McCaskill, AJ ;
Hoffman, NE ;
Davis, KR ;
Görlach, J .
PLANT CELL, 2001, 13 (07) :1499-1510
[9]   Induction of a carbon-starvation-related proteolysis in whole maize plants submitted to light/dark cycles and to extended darkness [J].
Brouquisse, R ;
Gaudillère, JP ;
Raymond, P .
PLANT PHYSIOLOGY, 1998, 117 (04) :1281-1291
[10]   The molecular analysis of leaf senescence - a genomics approach [J].
Buchanan-Wollaston, V ;
Earl, S ;
Harrison, E ;
Mathas, E ;
Navabpour, S ;
Page, T ;
Pink, D .
PLANT BIOTECHNOLOGY JOURNAL, 2003, 1 (01) :3-22