Pseudomonad cyclopentadecanone monooxygenase displaying an uncommon spectrum of Baeyer-Villiger oxidations of cyclic ketones

被引:73
作者
Iwaki, H
Wang, SZ
Grosse, S
Bergeron, H
Nagahashi, A
Lertvorachon, J
Yang, JZ
Konishi, Y
Hasegawa, Y
Lau, PCK
机构
[1] Natl Res Council Canada, Biotechnol Res Inst, Montreal, PQ H4P 2R2, Canada
[2] Kansai Univ, Dept Biotechnol, Fac Engn, Suita, Osaka 5648680, Japan
[3] Kansai Univ, High Technol Res Ctr, Suita, Osaka 5648680, Japan
关键词
D O I
10.1128/AEM.72.4.2707-2720.2006
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Baeyer-Villiger monooxygenases (BVMOs) are biocatalysts that offer the prospect of high chemo-, regio-, and enantioselectivity in the organic synthesis of lactones or esters from a variety of ketones. In this study, we have cloned, sequenced, and overexpressed in Escherichia coli a new BVMO, cyclopentadecanone monooxygenase (CpdB or CPDMO), originally derived from Pseudomonas sp. strain HI-70. The 601-residue primary structure of CpdB revealed only 29% to 50% sequence identity to those of known BVMOs. A new sequence motif, characterized by a cluster of charged residues, was identified in a subset of BVMO sequences that contain an N-terminal extension of similar to 60 to 147 amino acids. The 64-kDa CPDMO enzyme was purified to apparent homogeneity, providing a specific activity of 3.94 mu mol/min/mg protein and a 20% yield. CPDMO is monomeric and NADPH dependent and contains similar to 1 mol flavin adenine dinucleotide per mole of protein. A deletion mutant suggested the importance of the N-terminal 54 amino acids to CPDMO activity. In addition, a Ser261Ala substitution in a Rossmann fold motif resulted in an improved stability and increased affinity of the enzyme towards NADPH compared to the wild-type enzyme (K-m = 8 mu M versus K-m = 24 mu M). Substrate profiling indicated that CPDMO is unusual among known BVMOs in being able to accommodate and oxidize both large and small ring substrates that include C-11 to C-15 ketones, methyl-substituted C-5 and C-6 ketones, and bicyclic ketones, such as decalone and beta-tetralone. CPDMO has the highest affinity (K-m = 5.8 mu M) and the highest catalytic efficiency (k(cat)/K-m ratio of 7.2 x 10(5) M-1 s(-1)) toward cyclopentadecanone, hence the Cpd designation. A number of whole-cell biotransformations were carried out, and as a result, CPDMO was found to have an excellent enantioselectivity (E > 200) as well as 99% S-selectivity toward 2-methylcyclohexanone for the production of 7-methyl-2-oxepanone, a potentially valuable chiral building block. Although showing a modest selectivity (E = 5.8), macrolactone formation of 15-hexadecanolide from the kinetic resolution of 2-methylcyclopentadecanone using CPDMO was also demonstrated.
引用
收藏
页码:2707 / 2720
页数:14
相关论文
共 72 条
[71]  
WILSON K, 1994, CURRENT PROTOCOLS MO
[72]   IMPROVED M13 PHAGE CLONING VECTORS AND HOST STRAINS - NUCLEOTIDE-SEQUENCES OF THE M13MP18 AND PUC19 VECTORS [J].
YANISCHPERRON, C ;
VIEIRA, J ;
MESSING, J .
GENE, 1985, 33 (01) :103-119