Optimal investment for insurer with jump-diffusion risk process

被引:350
作者
Yang, HL
Zhang, LH
机构
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
[2] Tsinghua Univ, Sch Econ & Management, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamilton-Jacobi-Bellman equations; martingale; utility; jump-diffusion; Ito's formula; Stochastic control;
D O I
10.1016/j.insmatheco.2005.06.009
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we study optimal investment policies of an insurer with jump-diffusion risk process. Under the assumptions that the risk process is compound Poisson process perturbed by a standard Brownian motion and the insurer can invest in the money market and in a risky asset, we obtain the close form expression of the optimal policy when the utility function is exponential. We also study the insurer's optimal policy for general objective function, a verification theorem is proved by using martingale optimality principle and Ito's formula for jump-diffusion process. In the case of minimizing ruin probability, numerical methods and numerical results are presented for various claim-size distributions. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:615 / 634
页数:20
相关论文
共 41 条
[1]   Controlled diffusion models for optimal dividend pay-out [J].
Asmussen, S ;
Taksar, M .
INSURANCE MATHEMATICS & ECONOMICS, 1997, 20 (01) :1-15
[3]  
Browne S., 1999, Finance and Stochastics, V3, P275
[4]  
Buhlmann H., 1970, MATH METHODS RISK TH
[5]  
Cai J, 2005, IN PRESS ADV APPL PR, P37
[6]  
Cont R., 2003, Financial Modelling with Jump Processes
[7]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[8]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[9]   OPTIMAL REINSURANCE [J].
DAYANANDA, PW .
JOURNAL OF APPLIED PROBABILITY, 1970, 7 (01) :134-+
[10]  
Embrechts P., 1997, MODELLING EXTREMAL E, DOI 10.1007/978-3-642-33483-2