Optimal investment for insurer with jump-diffusion risk process

被引:350
作者
Yang, HL
Zhang, LH
机构
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
[2] Tsinghua Univ, Sch Econ & Management, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamilton-Jacobi-Bellman equations; martingale; utility; jump-diffusion; Ito's formula; Stochastic control;
D O I
10.1016/j.insmatheco.2005.06.009
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we study optimal investment policies of an insurer with jump-diffusion risk process. Under the assumptions that the risk process is compound Poisson process perturbed by a standard Brownian motion and the insurer can invest in the money market and in a risky asset, we obtain the close form expression of the optimal policy when the utility function is exponential. We also study the insurer's optimal policy for general objective function, a verification theorem is proved by using martingale optimality principle and Ito's formula for jump-diffusion process. In the case of minimizing ruin probability, numerical methods and numerical results are presented for various claim-size distributions. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:615 / 634
页数:20
相关论文
共 41 条
[21]   Optimal proportional reinsurance policies for diffusion models with transaction costs [J].
Hojgaard, B ;
Taksar, M .
INSURANCE MATHEMATICS & ECONOMICS, 1998, 22 (01) :41-51
[22]  
Hojgaard B., 1998, Scand Actuar J, V2, P166, DOI [10.1080/03461238.1998.10414000, DOI 10.1080/03461238.1998.10414000]
[23]  
HOJGAARD B, 2000, OPTIMAL DYNAMIC PROT
[24]  
HUANG CH, 1987, FDN FINANCIAL EC
[25]   Optimal control of risk exposure, reinsurance and investments for insurance portfolios [J].
Irgens, C ;
Paulsen, J .
INSURANCE MATHEMATICS & ECONOMICS, 2004, 35 (01) :21-51
[26]   Optimization of the flow of dividends [J].
JeanblancPicque, M ;
Shiryaev, AN .
RUSSIAN MATHEMATICAL SURVEYS, 1995, 50 (02) :257-277
[27]  
Karatzas I., 1988, BROWNIAN MOTION STOC, DOI 10.1007/978-1-4612-0949-2
[28]  
Krylov N. V., 1980, Controlled Diffusion Processes, V14
[29]  
Liu C.S., 2004, North American Actuarial Journal, V8, P11
[30]  
Mar tin-Lof A., 1994, Scandinavian Actuarial Journal, V1994, P1