Graphite Oxides: Effects of Permanganate and Chlorate Oxidants on the Oxygen Composition

被引:158
作者
Chua, Chun Kiang [1 ]
Sofer, Zdenek [2 ]
Pumera, Martin [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Chem & Biol Chem, Singapore 637371, Singapore
[2] Inst Chem Technol, Dept Inorgan Chem, CR-16628 Prague 6, Czech Republic
关键词
electrochemistry; graphite oxides; materials science; oxidation; oxygen-containing groups; GRAPHENE OXIDE; VOLTAMMETRY; REDUCTION;
D O I
10.1002/chem.201202320
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Research on graphene materials has refocused on graphite oxides (GOs) in recent years. The fabrication of GO is commonly accomplished by using concentrated sulfuric acid in conjunction with: a) fuming nitric acid and KClO3 oxidant (Staudenmaier); b) concentrated nitric acid and KClO3 oxidant (Hofmann); c) sodium nitrate for in situ production of nitric acid in the presence of KMnO4 (Hummers); or d) concentrated phosphoric acid with KMnO4 (Tour). These methods have been used interchangeably in the graphene community, since the properties of GOs produced by these different methods were assumed as almost similar. In light of the wide applicability of GOs in nanotechnology applications, in which presence of certain oxygen functional groups are specifically important, the qualities and functionalities of the GOs produced by using these four different methods, side-by-side, was investigated. The structural characterizations of the GOs would be probed by using high resolution X-ray photoelectron spectroscopy, nuclear magnetic resonance, Fourier transform infrared spectroscopy, and Raman spectroscopy. Further electrochemical applicability would be evaluated by using electrochemical impedance spectroscopy and cyclic voltammetry techniques. Our analyses highlighted that the oxidation methods based on permanganate oxidant (Hummers and Tour methods) gave GOs with lower heterogeneous electron-transfer rates and a higher amount of carbonyl and carboxyl functionalities compared with when using chlorate oxidant (Staudenmaier and Hofmann methods). These observations indicated large disparities between the GOs obtained from different oxidation methods. Such insights would provide fundamental knowledge for fine tuning GO for future applications.
引用
收藏
页码:13453 / 13459
页数:7
相关论文
共 36 条
[1]  
Brodie B. C., 1859, PHILOS T R SOC LONDO, V149, P249, DOI [10.1098/rspl.1859.0007, DOI 10.1098/RSTL.1859.0013]
[2]   Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide [J].
Cai, Weiwei ;
Piner, Richard D. ;
Stadermann, Frank J. ;
Park, Sungjin ;
Shaibat, Medhat A. ;
Ishii, Yoshitaka ;
Yang, Dongxing ;
Velamakanni, Aruna ;
An, Sung Jin ;
Stoller, Meryl ;
An, Jinho ;
Chen, Dongmin ;
Ruoff, Rodney S. .
SCIENCE, 2008, 321 (5897) :1815-1817
[3]   Solid-State Electrochemistry of Graphene Oxides: Absolute Quantification of Reducible Groups using Voltammetry [J].
Chng, Elaine Lay Khim ;
Pumera, Martin .
CHEMISTRY-AN ASIAN JOURNAL, 2011, 6 (11) :2899-2901
[4]  
Collins W.R., 2011, Angew. Chem, V123, P9010
[5]   Claisen Rearrangement of Graphite Oxide: A Route to Covalently Functionalized Graphenes [J].
Collins, William R. ;
Lewandowski, Wiktor ;
Schmois, Ezequiel ;
Walish, Joseph ;
Swager, Timothy M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (38) :8848-8852
[6]  
Dreyer D. R., 2010, ANGEW CHEM, V122, P9524
[7]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[8]   From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future [J].
Dreyer, Daniel R. ;
Ruoff, Rodney S. ;
Bielawski, Christopher W. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (49) :9336-9344
[9]  
Gao W, 2009, NAT CHEM, V1, P403, DOI [10.1038/NCHEM.281, 10.1038/nchem.281]
[10]   Thin-film particles of graphite oxide. 2: Preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits [J].
Hirata, M ;
Gotou, T ;
Ohba, M .
CARBON, 2005, 43 (03) :503-510