Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature

被引:150
作者
Yu, Kai Man Kerry [1 ]
Tong, Weiyi [1 ,2 ]
West, Adam [1 ]
Cheung, Kevin [1 ]
Li, Tong [3 ]
Smith, George [3 ]
Guo, Yanglong [2 ]
Tsang, Shik Chi Edman [1 ]
机构
[1] Univ Oxford, Dept Chem, Wolfson Catalysis Ctr, Oxford OX1 3QR, England
[2] E China Univ Sci & Technol, Res Inst Ind Catalysis, Shanghai 200237, Peoples R China
[3] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
来源
NATURE COMMUNICATIONS | 2012年 / 3卷
基金
英国工程与自然科学研究理事会;
关键词
CATALYSTS; CO;
D O I
10.1038/ncomms2242
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A non-syngas direct steam reforming route is investigated for the conversion of methanol to hydrogen and carbon dioxide over a CuZnGaOx catalyst at 150-200 degrees C. This route is in marked contrast with the conventional complex route involving steam reformation to syngas (CO/H-2) at high temperature, followed by water gas shift and CO cleanup stages for hydrogen production. Here we report that high quality hydrogen and carbon dioxide can be produced in a single-step reaction over the catalyst, with no detectable CO (below detection limit of 1 ppm). This can be used to supply proton exchange membrane fuel cells for mobile applications without invoking any CO shift and cleanup stages. The working catalyst contains, on average, 3-4 nm copper particles, alongside extremely small size of copper clusters stabilized on a defective ZnGa2O4 spinel oxide surface, providing hydrogen productivity of 393.6 ml g(-1)-cat h(-1) at 150 degrees C.
引用
收藏
页数:7
相关论文
共 19 条
[1]  
Behrens M, 2012, SCIENCE, V336, P893, DOI [10.1126/science.1219831, 10.1126/science.12198331]
[2]   Prevention of Catalyst Deactivation in the Hydrogenolysis of Glycerol by Ga2O3-Modified Copper/Zinc Oxide Catalysts [J].
Bienholz, Arne ;
Blume, Raoul ;
Knop-Gericke, Axel ;
Girgsdies, Frank ;
Behrens, Malte ;
Claus, Peter .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (04) :999-1005
[3]   SIZE EFFECTS ON THE LINEWIDTHS OF THE AUGER-SPECTRA OF CU CLUSTERS [J].
DECRESCENZI, M ;
DIOCIAIUTI, M ;
LOZZI, L ;
PICOZZI, P ;
SANTUCCI, S ;
BATTISTONI, C ;
MATTOGNO, G .
SURFACE SCIENCE, 1986, 178 (1-3) :282-289
[4]   Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/Al2O3 catalysts for methanol synthesis [J].
Kasatkin, Igor ;
Kurr, Patrick ;
Kniep, Benjamin ;
Trunschke, Annette ;
Schloegl, Robert .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (38) :7324-7327
[5]   Morphology-Dependent Interactions of ZnO with Cu Nanoparticles at the Materials' Interface in Selective Hydrogenation of CO2 to CH3OH [J].
Liao, Fenglin ;
Huang, Yaqun ;
Ge, Junwei ;
Zheng, Weiran ;
Tedsree, Karaked ;
Collier, Paul ;
Hong, Xinlin ;
Tsang, Shik C. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (09) :2162-2165
[6]  
Olah G. A., 1998, OIL GAS METHANOL EC
[7]   Methanol steam reforming for hydrogen production [J].
Palo, Daniel R. ;
Dagle, Robert A. ;
Holladay, Jamie D. .
CHEMICAL REVIEWS, 2007, 107 (10) :3992-4021
[8]   CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst [J].
Purnama, H ;
Ressler, T ;
Jentoft, RE ;
Soerijanto, H ;
Schlögl, R ;
Schomäcker, R .
APPLIED CATALYSIS A-GENERAL, 2004, 259 (01) :83-94
[9]   The microstructure of copper zinc oxide catalysts:: Bridging the materials gap [J].
Ressler, T ;
Kniep, BL ;
Kasatkin, I ;
Schlögl, R .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (30) :4704-4707
[10]   Decreased CO production in methanol steam reforming over Cu/ZrO2 catalysts prepared by the microemulsion technique [J].
Ritzkopf, I ;
Vukojevic, S ;
Weidenthaler, C ;
Grunwaldt, JD ;
Schüth, F .
APPLIED CATALYSIS A-GENERAL, 2006, 302 (02) :215-223