Sequential Monte Carlo methods for multiple target tracking and data fusion

被引:250
作者
Hue, C [1 ]
Le Cadre, JP
Pérez, P
机构
[1] Univ Rennes 1, Irisa, Rennes, France
[2] CNRS, Irisa, Rennes, France
[3] Microsoft Res, Cambridge, England
关键词
Bayesian estimation; bearings-only tracking; Gibbs sampler; multiple receivers; multiple targets tracking; particle filter;
D O I
10.1109/78.978386
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The classical particle filter deals with the estimation of one state process conditioned on a realization of one observation process. We extend it here to the estimation of multiple state processes given realizations of several kinds of observation processes. The new algorithm is used to track with success multiple targets in a bearings-only context, whereas a JPDAF diverges. Making use of the ability of the particle filter to mix different types of observations, e then investigate how to join passive and active measurements for improved tracking.
引用
收藏
页码:309 / 325
页数:17
相关论文
共 34 条
[1]  
ARULAMPALAM S, 2000, DSTOTR0917 EL SURV R
[2]   STOCHASTIC SIMULATION BAYESIAN-APPROACH TO MULTITARGET TRACKING [J].
AVITZOUR, D .
IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 1995, 142 (02) :41-44
[3]  
Bar-Shalom Y., 1988, Tracking and Data Association
[4]   EXPLAINING THE GIBBS SAMPLER [J].
CASELLA, G ;
GEORGE, EI .
AMERICAN STATISTICIAN, 1992, 46 (03) :167-174
[5]  
Celeux G., 1992, STOCHASTICS STOCHAST, V41, P119, DOI DOI 10.1080/17442509208833797
[6]  
DEFREITAS JFG, 1999, THESIS TRINITY COLL
[7]  
Del Moral P, 1999, ANN APPL PROBAB, V9, P275
[8]  
DIEBOLT J, 1994, J ROY STAT SOC B MET, V56, P363
[9]  
DOUCET A, 1998, 310 CUEDFINFENGTR DE
[10]  
DOUCET A, 2000, 381 CUEDFINFENGTR DE