Kinetic enhancement of starch bioconversion in thermoseparating aqueous two-phase reactor systems

被引:17
作者
Li, M [1 ]
Kim, JW [1 ]
Peeples, TL [1 ]
机构
[1] Univ Iowa, Dept Chem & Biochem Engn, Iowa City, IA 52242 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
aqueous two-phase partitioning; alpha-amylase; amyloglucosidase; batch processing; bioconversion; starch hydrolysis; modeling;
D O I
10.1016/S1369-703X(02)00012-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The extractive bioconversion of starch in an aqueous two-phase reactor system (ATPRS) was studied through experimentation and mathematical modeling. The phase-forming components included PEO-PPO-2500 (a random copolymer of ethylene oxide and propylene oxide with molecular weight of 2500) and MgSO4. Partitioning of glucose and maltose in the PEO-PPO/MgSO4 system was determined. Hydrolysis rates of soluble and corn starches in one-phase and aqueous two-phase reactor systems were compared. Starch consumption and glucose production kinetics were evaluated for a-amylase and amyloglucosidase separately as well as synergistically. A Michaelis-Menten kinetic model with product inhibition was employed to describe enzymatic hydrolysis. This model was expanded to include reaction with simultaneous partitioning for the two-phase system. Parametric studies of starch hydrolysis in the ATPRS with respect to the partition coefficient of the final hydrolysis product, glucose, were performed to simulate starch conversion profiles. The use of the ATPRS reduced the hydrolysis time to almost half of that for single-phase processing. These results were confirmed experimentally. The PEO-PPO-2500/MgSO4 system enhanced the starch hydrolysis by decreasing the glucose inhibition. The hydrolysis reaction was completed in 10 h in ATPRS system while taking 18 h in one-phase aqueous system. The goodness of lit between model and experiments demonstrates that thermodynamic partition data, coupled with the lumped kinetic model for dual enzymatic hydrolysis and product inhibition are appropriate for describing the two-phase bioreactor system. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:25 / 32
页数:8
相关论文
共 31 条
[1]  
Åkerberg C, 2000, J CHEM TECHNOL BIOT, V75, P306, DOI [10.1002/(SICI)1097-4660(200004)75:4&lt
[2]  
306::AID-JCTB218&gt
[3]  
3.0.CO
[4]  
2-U, 10.1002/(SICI)1097-4660(200004)75:4<306::AID-JCTB218>3.3.CO
[5]  
2-L]
[6]   ALPHA-AMYLASE PRODUCTION IN AQUEOUS 2-PHASE SYSTEMS WITH BACILLUS-SUBTILIS [J].
ANDERSSON, E ;
JOHANSSON, AC ;
HAHNHAGERDAL, B .
ENZYME AND MICROBIAL TECHNOLOGY, 1985, 7 (07) :333-338
[7]  
Fogler H.S., 1999, ELEMENTS CHEM REACTI
[8]   SYNERGISTIC ACTION OF ALPHA-AMYLASE AND GLUCOAMYLASE ON HYDROLYSIS OF STARCH [J].
FUJII, M ;
KAWAMURA, Y .
BIOTECHNOLOGY AND BIOENGINEERING, 1985, 27 (03) :260-265
[9]   AMYLOLYTIC ENZYMES AND PRODUCTS DERIVED FROM STARCH - A REVIEW [J].
GUZMANMALDONADO, H ;
PAREDESLOPEZ, O .
CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 1995, 35 (05) :373-403
[10]   THIN-LAYER CHROMATOGRAPHIC METHOD FOR IDENTIFICATION OF OLIGOSACCHARIDES IN STARCH HYDROLYZATES [J].
HANSEN, SA .
JOURNAL OF CHROMATOGRAPHY, 1975, 105 (02) :388-390